summaryrefslogtreecommitdiff
path: root/scripts/generator/generator.py
diff options
context:
space:
mode:
authorCedric Nugteren <web@cedricnugteren.nl>2016-11-23 22:00:20 +0100
committerCedric Nugteren <web@cedricnugteren.nl>2016-11-23 22:00:20 +0100
commit792cc8359fe96dd6a53064579b18f76d9e913f98 (patch)
tree54c3bfa0940b5051b21820f9bc9e287d04d6ba0f /scripts/generator/generator.py
parentfa42befcc1e180555e164f4f7c1cf2c63d658baa (diff)
Fixed a vector-size related bug in the CLBlast Netlib API
Diffstat (limited to 'scripts/generator/generator.py')
-rwxr-xr-xscripts/generator/generator.py30
1 files changed, 15 insertions, 15 deletions
diff --git a/scripts/generator/generator.py b/scripts/generator/generator.py
index 5f0bb0d4..35d902b7 100755
--- a/scripts/generator/generator.py
+++ b/scripts/generator/generator.py
@@ -101,21 +101,21 @@ ROUTINES = [
[ # Level 1: vector-vector
Routine(False, True, "1", "rotg", T, [S,D], [], [], [], ["sa","sb","sc","ss"], ["1","1","1","1"], [], "", "Generate givens plane rotation", "", []),
Routine(False, True, "1", "rotmg", T, [S,D], [], [], ["sy1"], ["sd1","sd2","sx1","sparam"], ["1","1","1","1","1"], [], "", "Generate modified givens plane rotation", "", []),
- Routine(False, True, "1", "rot", T, [S,D], ["n"], [], [], ["x","y"], ["n","n"], ["cos","sin"],"", "Apply givens plane rotation", "", []),
- Routine(False, True, "1", "rotm", T, [S,D], ["n"], [], [], ["x","y","sparam"], ["n","n","1"], [], "", "Apply modified givens plane rotation", "", []),
- Routine(True, True, "1", "swap", T, [S,D,C,Z,H], ["n"], [], [], ["x","y"], ["n","n"], [], "", "Swap two vectors", "Interchanges _n_ elements of vectors _x_ and _y_.", []),
- Routine(True, True, "1", "scal", T, [S,D,C,Z,H], ["n"], [], [], ["x"], ["n"], ["alpha"], "", "Vector scaling", "Multiplies _n_ elements of vector _x_ by a scalar constant _alpha_.", []),
- Routine(True, True, "1", "copy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], ["n","n"], [], "", "Vector copy", "Copies the contents of vector _x_ into vector _y_.", []),
- Routine(True, True, "1", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], ["n","n"], ["alpha"], "", "Vector-times-constant plus vector", "Performs the operation _y = alpha * x + y_, in which _x_ and _y_ are vectors and _alpha_ is a scalar constant.", []),
- Routine(True, True, "1", "dot", T, [S,D,H], ["n"], [], ["x","y"], ["dot"], ["n","n","1"], [], "n", "Dot product of two vectors", "Multiplies _n_ elements of the vectors _x_ and _y_ element-wise and accumulates the results. The sum is stored in the _dot_ buffer.", []),
- Routine(True, True, "1", "dotu", T, [C,Z], ["n"], [], ["x","y"], ["dot"], ["n","n","1"], [], "n", "Dot product of two complex vectors", "See the regular xDOT routine.", []),
- Routine(True, True, "1", "dotc", T, [C,Z], ["n"], [], ["x","y"], ["dot"], ["n","n","1"], [], "n", "Dot product of two complex vectors, one conjugated", "See the regular xDOT routine.", []),
- Routine(True, True, "1", "nrm2", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["nrm2"], ["n","1"], [], "2*n", "Euclidian norm of a vector", "Accumulates the square of _n_ elements in the _x_ vector and takes the square root. The resulting L2 norm is stored in the _nrm2_ buffer.", []),
- Routine(True, True, "1", "asum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["asum"], ["n","1"], [], "n", "Absolute sum of values in a vector", "Accumulates the absolute value of _n_ elements in the _x_ vector. The results are stored in the _asum_ buffer.", []),
- Routine(True, False, "1", "sum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["sum"], ["n","1"], [], "n", "Sum of values in a vector (non-BLAS function)", "Accumulates the values of _n_ elements in the _x_ vector. The results are stored in the _sum_ buffer. This routine is the non-absolute version of the xASUM BLAS routine.", []),
- Routine(True, True, "1", "amax", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], ["n","1"], [], "2*n", "Index of absolute maximum value in a vector", "Finds the index of the maximum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer.", []),
- Routine(True, False, "1", "max", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], ["n","1"], [], "2*n", "Index of maximum value in a vector (non-BLAS function)", "Finds the index of the maximum of the values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer. This routine is the non-absolute version of the IxAMAX BLAS routine.", []),
- Routine(True, False, "1", "min", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], ["n","1"], [], "2*n", "Index of minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer. This routine is the non-absolute minimum version of the IxAMAX BLAS routine.", []),
+ Routine(False, True, "1", "rot", T, [S,D], ["n"], [], [], ["x","y"], [xn,yn], ["cos","sin"],"", "Apply givens plane rotation", "", []),
+ Routine(False, True, "1", "rotm", T, [S,D], ["n"], [], [], ["x","y","sparam"], [xn,yn,"1"], [], "", "Apply modified givens plane rotation", "", []),
+ Routine(True, True, "1", "swap", T, [S,D,C,Z,H], ["n"], [], [], ["x","y"], [xn,yn], [], "", "Swap two vectors", "Interchanges _n_ elements of vectors _x_ and _y_.", []),
+ Routine(True, True, "1", "scal", T, [S,D,C,Z,H], ["n"], [], [], ["x"], [xn], ["alpha"], "", "Vector scaling", "Multiplies _n_ elements of vector _x_ by a scalar constant _alpha_.", []),
+ Routine(True, True, "1", "copy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], [], "", "Vector copy", "Copies the contents of vector _x_ into vector _y_.", []),
+ Routine(True, True, "1", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], [xn,yn], ["alpha"], "", "Vector-times-constant plus vector", "Performs the operation _y = alpha * x + y_, in which _x_ and _y_ are vectors and _alpha_ is a scalar constant.", []),
+ Routine(True, True, "1", "dot", T, [S,D,H], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two vectors", "Multiplies _n_ elements of the vectors _x_ and _y_ element-wise and accumulates the results. The sum is stored in the _dot_ buffer.", []),
+ Routine(True, True, "1", "dotu", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors", "See the regular xDOT routine.", []),
+ Routine(True, True, "1", "dotc", T, [C,Z], ["n"], [], ["x","y"], ["dot"], [xn,yn,"1"], [], "n", "Dot product of two complex vectors, one conjugated", "See the regular xDOT routine.", []),
+ Routine(True, True, "1", "nrm2", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["nrm2"], [xn,"1"], [], "2*n", "Euclidian norm of a vector", "Accumulates the square of _n_ elements in the _x_ vector and takes the square root. The resulting L2 norm is stored in the _nrm2_ buffer.", []),
+ Routine(True, True, "1", "asum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["asum"], [xn,"1"], [], "n", "Absolute sum of values in a vector", "Accumulates the absolute value of _n_ elements in the _x_ vector. The results are stored in the _asum_ buffer.", []),
+ Routine(True, False, "1", "sum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["sum"], [xn,"1"], [], "n", "Sum of values in a vector (non-BLAS function)", "Accumulates the values of _n_ elements in the _x_ vector. The results are stored in the _sum_ buffer. This routine is the non-absolute version of the xASUM BLAS routine.", []),
+ Routine(True, True, "1", "amax", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of absolute maximum value in a vector", "Finds the index of the maximum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer.", []),
+ Routine(True, False, "1", "max", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], [xn,"1"], [], "2*n", "Index of maximum value in a vector (non-BLAS function)", "Finds the index of the maximum of the values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer. This routine is the non-absolute version of the IxAMAX BLAS routine.", []),
+ Routine(True, False, "1", "min", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], [xn,"1"], [], "2*n", "Index of minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer. This routine is the non-absolute minimum version of the IxAMAX BLAS routine.", []),
],
[ # Level 2: matrix-vector
Routine(True, True, "2a", "gemv", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General matrix-vector multiplication", "Performs the operation _y = alpha * A * x + beta * y_, in which _x_ is an input vector, _y_ is an input and output vector, _A_ is an input matrix, and _alpha_ and _beta_ are scalars. The matrix _A_ can optionally be transposed before performing the operation.", [ald_m]),