summaryrefslogtreecommitdiff
path: root/scripts/generator
diff options
context:
space:
mode:
authorCedric Nugteren <web@cedricnugteren.nl>2016-10-25 19:21:49 +0200
committerCedric Nugteren <web@cedricnugteren.nl>2016-10-25 19:21:49 +0200
commit59183b7d79b70d918562d5048e521633d425ca1c (patch)
tree351537cb60845a779fb94a3f005d27234f569386 /scripts/generator
parentf96fd372bc3087938572ebc55bd1d8e1b7e6f18a (diff)
Sets the proper sizes for the buffers for the Netlib CBLAS API
Diffstat (limited to 'scripts/generator')
-rwxr-xr-xscripts/generator/generator.py127
1 files changed, 81 insertions, 46 deletions
diff --git a/scripts/generator/generator.py b/scripts/generator/generator.py
index 4ba97ff8..99edf355 100755
--- a/scripts/generator/generator.py
+++ b/scripts/generator/generator.py
@@ -59,6 +59,41 @@ bld_trans_n_k = "When `transpose == Transpose::kNo`, then `b_ld` must be at leas
cld_m = "The value of `c_ld` must be at least `m`."
cld_n = "The value of `c_ld` must be at least `n`."
+
+# Helper functions to compute vector and matrix sizes
+def size_helper(condition, size_one, size_two, multiplier):
+ length = "(" + condition + ")" + " ? " + size_one + " * " + multiplier + " : " + size_two + " * " + multiplier
+ return length
+
+
+def layout_transpose_condition(prefix):
+ return "(layout == Layout::kColMajor && " + prefix + "_transpose != Transpose::kNo) || " +\
+ "(layout == Layout::kRowMajor && " + prefix + "_transpose == Transpose::kNo)"
+
+
+# Different possibilities for the vector and matrix sizes
+xn = "n * x_inc"
+xm = "m * x_inc"
+yn = "n * y_inc"
+ym = "m * y_inc"
+an = "n * a_ld"
+apn = "((n*(n+1)) / 2)"
+cn = "n * c_ld"
+xmn = size_helper("a_transpose != Transpose::kNo", "m", "n", "x_inc")
+ynm = size_helper("a_transpose != Transpose::kNo", "n", "m", "y_inc")
+amn = size_helper("layout == Layout::kRowMajor", "m", "n", "a_ld")
+amns = size_helper("side == Side::kLeft", "m", "n", "a_ld")
+amk = size_helper(layout_transpose_condition("a"), "m", "k", "a_ld")
+ank = size_helper(layout_transpose_condition("a"), "n", "k", "a_ld")
+ankab = size_helper(layout_transpose_condition("ab"), "n", "k", "a_ld")
+bkn = size_helper(layout_transpose_condition("b"), "k", "n", "b_ld")
+bnkab = size_helper(layout_transpose_condition("ab"), "n", "k", "b_ld")
+bmn = size_helper("layout == Layout::kRowMajor", "m", "n", "b_ld")
+bnma = size_helper(layout_transpose_condition("a"), "n", "m", "b_ld")
+cmn = size_helper("layout == Layout::kRowMajor", "m", "n", "c_ld")
+ammn = size_helper("layout == Layout::kRowMajor", "m", "((side == Side::kLeft) ? m : n)", "a_ld")
+bmnn = size_helper("layout == Layout::kRowMajor", "((side == Side::kLeft) ? m : n)", "n", "b_ld")
+
# ==================================================================================================
# Populates a list of routines
@@ -66,63 +101,63 @@ ROUTINES = [
[ # Level 1: vector-vector
Routine(False, True, "1", "rotg", T, [S,D], [], [], [], ["sa","sb","sc","ss"], ["1","1","1","1"], [], "", "Generate givens plane rotation", "", []),
Routine(False, True, "1", "rotmg", T, [S,D], [], [], ["sy1"], ["sd1","sd2","sx1","sparam"], ["1","1","1","1","1"], [], "", "Generate modified givens plane rotation", "", []),
- Routine(False, True, "1", "rot", T, [S,D], ["n"], [], [], ["x","y"], ["n","n"], ["cos","sin"], "", "Apply givens plane rotation", "", []),
+ Routine(False, True, "1", "rot", T, [S,D], ["n"], [], [], ["x","y"], ["n","n"], ["cos","sin"],"", "Apply givens plane rotation", "", []),
Routine(False, True, "1", "rotm", T, [S,D], ["n"], [], [], ["x","y","sparam"], ["n","n","1"], [], "", "Apply modified givens plane rotation", "", []),
- Routine(True, True, "1", "swap", T, [S,D,C,Z,H], ["n"], [], [], ["x","y"], ["n","n"], [], "", "Swap two vectors", "Interchanges _n_ elements of vectors _x_ and _y_.", []),
- Routine(True, True, "1", "scal", T, [S,D,C,Z,H], ["n"], [], [], ["x"], ["n"], ["alpha"], "", "Vector scaling", "Multiplies _n_ elements of vector _x_ by a scalar constant _alpha_.", []),
- Routine(True, True, "1", "copy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], ["n","n"], [], "", "Vector copy", "Copies the contents of vector _x_ into vector _y_.", []),
- Routine(True, True, "1", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], ["n","n"], ["alpha"], "", "Vector-times-constant plus vector", "Performs the operation _y = alpha * x + y_, in which _x_ and _y_ are vectors and _alpha_ is a scalar constant.", []),
+ Routine(True, True, "1", "swap", T, [S,D,C,Z,H], ["n"], [], [], ["x","y"], ["n","n"], [], "", "Swap two vectors", "Interchanges _n_ elements of vectors _x_ and _y_.", []),
+ Routine(True, True, "1", "scal", T, [S,D,C,Z,H], ["n"], [], [], ["x"], ["n"], ["alpha"], "", "Vector scaling", "Multiplies _n_ elements of vector _x_ by a scalar constant _alpha_.", []),
+ Routine(True, True, "1", "copy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], ["n","n"], [], "", "Vector copy", "Copies the contents of vector _x_ into vector _y_.", []),
+ Routine(True, True, "1", "axpy", T, [S,D,C,Z,H], ["n"], [], ["x"], ["y"], ["n","n"], ["alpha"], "", "Vector-times-constant plus vector", "Performs the operation _y = alpha * x + y_, in which _x_ and _y_ are vectors and _alpha_ is a scalar constant.", []),
Routine(True, True, "1", "dot", T, [S,D,H], ["n"], [], ["x","y"], ["dot"], ["n","n","1"], [], "n", "Dot product of two vectors", "Multiplies _n_ elements of the vectors _x_ and _y_ element-wise and accumulates the results. The sum is stored in the _dot_ buffer.", []),
Routine(True, True, "1", "dotu", T, [C,Z], ["n"], [], ["x","y"], ["dot"], ["n","n","1"], [], "n", "Dot product of two complex vectors", "See the regular xDOT routine.", []),
Routine(True, True, "1", "dotc", T, [C,Z], ["n"], [], ["x","y"], ["dot"], ["n","n","1"], [], "n", "Dot product of two complex vectors, one conjugated", "See the regular xDOT routine.", []),
- Routine(True, True, "1", "nrm2", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["nrm2"], ["n","1"], [], "2*n", "Euclidian norm of a vector", "Accumulates the square of _n_ elements in the _x_ vector and takes the square root. The resulting L2 norm is stored in the _nrm2_ buffer.", []),
- Routine(True, True, "1", "asum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["asum"], ["n","1"], [], "n", "Absolute sum of values in a vector", "Accumulates the absolute value of _n_ elements in the _x_ vector. The results are stored in the _asum_ buffer.", []),
- Routine(True, False, "1", "sum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["sum"], ["n","1"], [], "n", "Sum of values in a vector (non-BLAS function)", "Accumulates the values of _n_ elements in the _x_ vector. The results are stored in the _sum_ buffer. This routine is the non-absolute version of the xASUM BLAS routine.", []),
- Routine(True, True, "1", "amax", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], ["n","1"], [], "2*n", "Index of absolute maximum value in a vector", "Finds the index of the maximum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer.", []),
- Routine(True, False, "1", "max", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], ["n","1"], [], "2*n", "Index of maximum value in a vector (non-BLAS function)", "Finds the index of the maximum of the values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer. This routine is the non-absolute version of the IxAMAX BLAS routine.", []),
- Routine(True, False, "1", "min", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], ["n","1"], [], "2*n", "Index of minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer. This routine is the non-absolute minimum version of the IxAMAX BLAS routine.", []),
+ Routine(True, True, "1", "nrm2", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["nrm2"], ["n","1"], [], "2*n", "Euclidian norm of a vector", "Accumulates the square of _n_ elements in the _x_ vector and takes the square root. The resulting L2 norm is stored in the _nrm2_ buffer.", []),
+ Routine(True, True, "1", "asum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["asum"], ["n","1"], [], "n", "Absolute sum of values in a vector", "Accumulates the absolute value of _n_ elements in the _x_ vector. The results are stored in the _asum_ buffer.", []),
+ Routine(True, False, "1", "sum", T, [S,D,Sc,Dz,H], ["n"], [], ["x"], ["sum"], ["n","1"], [], "n", "Sum of values in a vector (non-BLAS function)", "Accumulates the values of _n_ elements in the _x_ vector. The results are stored in the _sum_ buffer. This routine is the non-absolute version of the xASUM BLAS routine.", []),
+ Routine(True, True, "1", "amax", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], ["n","1"], [], "2*n", "Index of absolute maximum value in a vector", "Finds the index of the maximum of the absolute values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer.", []),
+ Routine(True, False, "1", "max", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imax"], ["n","1"], [], "2*n", "Index of maximum value in a vector (non-BLAS function)", "Finds the index of the maximum of the values in the _x_ vector. The resulting integer index is stored in the _imax_ buffer. This routine is the non-absolute version of the IxAMAX BLAS routine.", []),
+ Routine(True, False, "1", "min", T, [iS,iD,iC,iZ,iH], ["n"], [], ["x"], ["imin"], ["n","1"], [], "2*n", "Index of minimum value in a vector (non-BLAS function)", "Finds the index of the minimum of the values in the _x_ vector. The resulting integer index is stored in the _imin_ buffer. This routine is the non-absolute minimum version of the IxAMAX BLAS routine.", []),
],
[ # Level 2: matrix-vector
- Routine(True, True, "2a", "gemv", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a","x"], ["y"], ["n","n","n"], ["alpha","beta"], "", "General matrix-vector multiplication", "Performs the operation _y = alpha * A * x + beta * y_, in which _x_ is an input vector, _y_ is an input and output vector, _A_ is an input matrix, and _alpha_ and _beta_ are scalars. The matrix _A_ can optionally be transposed before performing the operation.", [ald_m]),
- Routine(True, True, "2a", "gbmv", T, [S,D,C,Z,H], ["m","n","kl","ku"], ["layout","a_transpose"], ["a","x"], ["y"], ["n","n","n"], ["alpha","beta"], "", "General banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is banded instead.", [ald_kl_ku_one]),
- Routine(True, True, "2a", "hemv", T, [C,Z], ["n"], ["layout","triangle"], ["a","x"], ["y"], ["n","n","n"], ["alpha","beta"], "", "Hermitian matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian matrix instead.", [ald_n]),
- Routine(True, True, "2a", "hbmv", T, [C,Z], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], ["n","n","n"], ["alpha","beta"], "", "Hermitian banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian banded matrix instead.", [ald_k_one]),
- Routine(True, True, "2a", "hpmv", T, [C,Z], ["n"], ["layout","triangle"], ["ap","x"], ["y"], ["n","n","n"], ["alpha","beta"], "", "Hermitian packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
- Routine(True, True, "2a", "symv", T, [S,D,H], ["n"], ["layout","triangle"], ["a","x"], ["y"], ["n","n","n"], ["alpha","beta"], "", "Symmetric matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric instead.", [ald_n]),
- Routine(True, True, "2a", "sbmv", T, [S,D,H], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], ["n","n","n"], ["alpha","beta"], "", "Symmetric banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric and banded instead.", [ald_k_one]),
- Routine(True, True, "2a", "spmv", T, [S,D,H], ["n"], ["layout","triangle"], ["ap","x"], ["y"], ["n","n","n"], ["alpha","beta"], "", "Symmetric packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
- Routine(True, True, "2a", "trmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], ["n","n"], [], "n", "Triangular matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular instead.", [ald_n]),
- Routine(True, True, "2a", "tbmv", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], ["n","n"], [], "n", "Triangular banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular and banded instead.", [ald_k_one]),
- Routine(True, True, "2a", "tpmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], ["n","n"], [], "n", "Triangular packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a triangular packed matrix instead and repreented as _AP_.", []),
- Routine(False, True, "2a", "trsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], ["n","n"], [], "", "Solves a triangular system of equations", "", []),
- Routine(False, True, "2a", "tbsv", T, [S,D,C,Z], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], ["n","n"], [], "", "Solves a banded triangular system of equations", "", [ald_k_one]),
- Routine(False, True, "2a", "tpsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], ["n","n"], [], "", "Solves a packed triangular system of equations", "", []),
+ Routine(True, True, "2a", "gemv", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General matrix-vector multiplication", "Performs the operation _y = alpha * A * x + beta * y_, in which _x_ is an input vector, _y_ is an input and output vector, _A_ is an input matrix, and _alpha_ and _beta_ are scalars. The matrix _A_ can optionally be transposed before performing the operation.", [ald_m]),
+ Routine(True, True, "2a", "gbmv", T, [S,D,C,Z,H], ["m","n","kl","ku"], ["layout","a_transpose"], ["a","x"], ["y"], [amn,xmn,ynm], ["alpha","beta"], "", "General banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is banded instead.", [ald_kl_ku_one]),
+ Routine(True, True, "2a", "hemv", T, [C,Z], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian matrix instead.", [ald_n]),
+ Routine(True, True, "2a", "hbmv", T, [C,Z], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Hermitian banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian banded matrix instead.", [ald_k_one]),
+ Routine(True, True, "2a", "hpmv", T, [C,Z], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Hermitian packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
+ Routine(True, True, "2a", "symv", T, [S,D,H], ["n"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric instead.", [ald_n]),
+ Routine(True, True, "2a", "sbmv", T, [S,D,H], ["n","k"], ["layout","triangle"], ["a","x"], ["y"], [an,xn,yn], ["alpha","beta"], "", "Symmetric banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is symmetric and banded instead.", [ald_k_one]),
+ Routine(True, True, "2a", "spmv", T, [S,D,H], ["n"], ["layout","triangle"], ["ap","x"], ["y"], [apn,xn,yn], ["alpha","beta"], "", "Symmetric packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
+ Routine(True, True, "2a", "trmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular instead.", [ald_n]),
+ Routine(True, True, "2a", "tbmv", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "n", "Triangular banded matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is triangular and banded instead.", [ald_k_one]),
+ Routine(True, True, "2a", "tpmv", T, [S,D,C,Z,H], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "n", "Triangular packed matrix-vector multiplication", "Same operation as xGEMV, but matrix _A_ is a triangular packed matrix instead and repreented as _AP_.", []),
+ Routine(False, True, "2a", "trsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a triangular system of equations", "", []),
+ Routine(False, True, "2a", "tbsv", T, [S,D,C,Z], ["n","k"], ["layout","triangle","a_transpose","diagonal"], ["a"], ["x"], [an,xn], [], "", "Solves a banded triangular system of equations", "", [ald_k_one]),
+ Routine(False, True, "2a", "tpsv", T, [S,D,C,Z], ["n"], ["layout","triangle","a_transpose","diagonal"], ["ap"], ["x"], [apn,xn], [], "", "Solves a packed triangular system of equations", "", []),
# Level 2: matrix update
- Routine(True, True, "2b", "ger", T, [S,D,H], ["m","n"], ["layout"], ["x","y"], ["a"], ["n","n","n"], ["alpha"], "", "General rank-1 matrix update", "Performs the operation _A = alpha * x * y^T + A_, in which _x_ is an input vector, _y^T_ is the transpose of the input vector _y_, _A_ is the matrix to be updated, and _alpha_ is a scalar value.", [ald_m]),
- Routine(True, True, "2b", "geru", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], ["n","n","n"], ["alpha"], "", "General rank-1 complex matrix update", "Same operation as xGER, but with complex data-types.", [ald_m]),
- Routine(True, True, "2b", "gerc", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], ["n","n","n"], ["alpha"], "", "General rank-1 complex conjugated matrix update", "Same operation as xGERU, but the update is done based on the complex conjugate of the input vectors.", [ald_m]),
- Routine(True, True, "2b", "her", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["a"], ["n","n"], ["alpha"], "", "Hermitian rank-1 matrix update", "Performs the operation _A = alpha * x * x^T + A_, in which x is an input vector, x^T is the transpose of this vector, _A_ is the triangular Hermetian matrix to be updated, and alpha is a scalar value.", [ald_n]),
- Routine(True, True, "2b", "hpr", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["ap"], ["n","n"], ["alpha"], "", "Hermitian packed rank-1 matrix update", "Same operation as xHER, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
- Routine(True, True, "2b", "her2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["a"], ["n","n","n"], ["alpha"], "", "Hermitian rank-2 matrix update", "Performs the operation _A = alpha * x * y^T + conj(alpha) * y * x^T + A_, in which _x_ is an input vector and _x^T_ its transpose, _y_ is an input vector and _y^T_ its transpose, _A_ is the triangular Hermetian matrix to be updated, _alpha_ is a scalar value and _conj(alpha)_ its complex conjugate.", [ald_n]),
- Routine(True, True, "2b", "hpr2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["ap"], ["n","n","n"], ["alpha"], "", "Hermitian packed rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
- Routine(True, True, "2b", "syr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["a"], ["n","n"], ["alpha"], "", "Symmetric rank-1 matrix update", "Same operation as xHER, but matrix A is a symmetric matrix instead.", [ald_n]),
- Routine(True, True, "2b", "spr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["ap"], ["n","n"], ["alpha"], "", "Symmetric packed rank-1 matrix update", "Same operation as xSPR, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
- Routine(True, True, "2b", "syr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["a"], ["n","n","n"], ["alpha"], "", "Symmetric rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is a symmetric matrix instead.", [ald_n]),
- Routine(True, True, "2b", "spr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["ap"], ["n","n","n"], ["alpha"], "", "Symmetric packed rank-2 matrix update", "Same operation as xSPR2, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
+ Routine(True, True, "2b", "ger", T, [S,D,H], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 matrix update", "Performs the operation _A = alpha * x * y^T + A_, in which _x_ is an input vector, _y^T_ is the transpose of the input vector _y_, _A_ is the matrix to be updated, and _alpha_ is a scalar value.", [ald_m]),
+ Routine(True, True, "2b", "geru", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex matrix update", "Same operation as xGER, but with complex data-types.", [ald_m]),
+ Routine(True, True, "2b", "gerc", T, [C,Z], ["m","n"], ["layout"], ["x","y"], ["a"], [xm,yn,amn], ["alpha"], "", "General rank-1 complex conjugated matrix update", "Same operation as xGERU, but the update is done based on the complex conjugate of the input vectors.", [ald_m]),
+ Routine(True, True, "2b", "her", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Hermitian rank-1 matrix update", "Performs the operation _A = alpha * x * x^T + A_, in which x is an input vector, x^T is the transpose of this vector, _A_ is the triangular Hermetian matrix to be updated, and alpha is a scalar value.", [ald_n]),
+ Routine(True, True, "2b", "hpr", Tc, [Css,Zdd], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Hermitian packed rank-1 matrix update", "Same operation as xHER, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
+ Routine(True, True, "2b", "her2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Hermitian rank-2 matrix update", "Performs the operation _A = alpha * x * y^T + conj(alpha) * y * x^T + A_, in which _x_ is an input vector and _x^T_ its transpose, _y_ is an input vector and _y^T_ its transpose, _A_ is the triangular Hermetian matrix to be updated, _alpha_ is a scalar value and _conj(alpha)_ its complex conjugate.", [ald_n]),
+ Routine(True, True, "2b", "hpr2", T, [C,Z], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Hermitian packed rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is an Hermitian packed matrix instead and represented as _AP_.", []),
+ Routine(True, True, "2b", "syr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["a"], [xn,an], ["alpha"], "", "Symmetric rank-1 matrix update", "Same operation as xHER, but matrix A is a symmetric matrix instead.", [ald_n]),
+ Routine(True, True, "2b", "spr", T, [S,D,H], ["n"], ["layout","triangle"], ["x"], ["ap"], [xn,apn], ["alpha"], "", "Symmetric packed rank-1 matrix update", "Same operation as xSPR, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
+ Routine(True, True, "2b", "syr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["a"], [xn,yn,an], ["alpha"], "", "Symmetric rank-2 matrix update", "Same operation as xHER2, but matrix _A_ is a symmetric matrix instead.", [ald_n]),
+ Routine(True, True, "2b", "spr2", T, [S,D,H], ["n"], ["layout","triangle"], ["x","y"], ["ap"], [xn,yn,apn], ["alpha"], "", "Symmetric packed rank-2 matrix update", "Same operation as xSPR2, but matrix _A_ is a symmetric packed matrix instead and represented as _AP_.", []),
],
[ # Level 3: matrix-matrix
- Routine(True, True, "3", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], ["n","n","n"], ["alpha","beta"], "", "General matrix-matrix multiplication", "Performs the matrix product _C = alpha * A * B + beta * C_, in which _A_ (_m_ by _k_) and _B_ (_k_ by _n_) are two general rectangular input matrices, _C_ (_m_ by _n_) is the matrix to be updated, and _alpha_ and _beta_ are scalar values. The matrices _A_ and/or _B_ can optionally be transposed before performing the operation.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
- Routine(True, True, "3", "symm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], ["n","n","n"], ["alpha","beta"], "", "Symmetric matrix-matrix multiplication", "Same operation as xGEMM, but _A_ is symmetric instead. In case of `side == kLeft`, _A_ is a symmetric _m_ by _m_ matrix and _C = alpha * A * B + beta * C_ is performed. Otherwise, in case of `side == kRight`, _A_ is a symmtric _n_ by _n_ matrix and _C = alpha * B * A + beta * C_ is performed.", [ald_side_m_n, bld_m, cld_m]),
- Routine(True, True, "3", "hemm", T, [C,Z], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], ["n","n","n"], ["alpha","beta"], "", "Hermitian matrix-matrix multiplication", "Same operation as xSYMM, but _A_ is an Hermitian matrix instead.", [ald_side_m_n, bld_m, cld_m]),
- Routine(True, True, "3", "syrk", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], ["n","n"], ["alpha","beta"], "", "Rank-K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * A^T + beta * C_ or _C = alpha * A^T * A + beta * C_, in which _A_ is a general matrix and _A^T_ is its transpose, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, cld_m]),
- Routine(True, True, "3", "herk", Tc, [Css,Zdd], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], ["n","n"], ["alpha","beta"], "", "Rank-K update of a hermitian matrix", "Same operation as xSYRK, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, cld_m]),
- Routine(True, True, "3", "syr2k", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], ["n","n","n"], ["alpha","beta"], "", "Rank-2K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * B^T + alpha * B * A^T + beta * C_ or _C = alpha * A^T * B + alpha * B^T * A + beta * C_, in which _A_ and _B_ are general matrices and _A^T_ and _B^T_ are their transposed versions, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
- Routine(True, True, "3", "her2k", TU, [Ccs,Zzd], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], ["n","n","n"], ["alpha","beta"], "", "Rank-2K update of a hermitian matrix", "Same operation as xSYR2K, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
- Routine(True, True, "3", "trmm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], ["n","n"], ["alpha"], "", "Triangular matrix-matrix multiplication", "Performs the matrix product _B = alpha * A * B_ or _B = alpha * B * A_, in which _A_ is a unit or non-unit triangular matrix, _B_ (_m_ by _n_) is the general matrix to be updated, and _alpha_ is a scalar value.", [ald_side_m_n, bld_m]),
- Routine(False, True, "3", "trsm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], ["n","n"], ["alpha"], "", "Solves a triangular system of equations", "", []),
+ Routine(True, True, "3", "gemm", T, [S,D,C,Z,H], ["m","n","k"], ["layout","a_transpose","b_transpose"], ["a","b"], ["c"], [amk,bkn,cmn], ["alpha","beta"], "", "General matrix-matrix multiplication", "Performs the matrix product _C = alpha * A * B + beta * C_, in which _A_ (_m_ by _k_) and _B_ (_k_ by _n_) are two general rectangular input matrices, _C_ (_m_ by _n_) is the matrix to be updated, and _alpha_ and _beta_ are scalar values. The matrices _A_ and/or _B_ can optionally be transposed before performing the operation.", [ald_transa_m_k, bld_transb_k_n, cld_m]),
+ Routine(True, True, "3", "symm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Symmetric matrix-matrix multiplication", "Same operation as xGEMM, but _A_ is symmetric instead. In case of `side == kLeft`, _A_ is a symmetric _m_ by _m_ matrix and _C = alpha * A * B + beta * C_ is performed. Otherwise, in case of `side == kRight`, _A_ is a symmtric _n_ by _n_ matrix and _C = alpha * B * A + beta * C_ is performed.", [ald_side_m_n, bld_m, cld_m]),
+ Routine(True, True, "3", "hemm", T, [C,Z], ["m","n"], ["layout","side","triangle"], ["a","b"], ["c"], [ammn,bmnn,cmn], ["alpha","beta"], "", "Hermitian matrix-matrix multiplication", "Same operation as xSYMM, but _A_ is an Hermitian matrix instead.", [ald_side_m_n, bld_m, cld_m]),
+ Routine(True, True, "3", "syrk", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * A^T + beta * C_ or _C = alpha * A^T * A + beta * C_, in which _A_ is a general matrix and _A^T_ is its transpose, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, cld_m]),
+ Routine(True, True, "3", "herk", Tc, [Css,Zdd], ["n","k"], ["layout","triangle","a_transpose"], ["a"], ["c"], [ank,cn], ["alpha","beta"], "", "Rank-K update of a hermitian matrix", "Same operation as xSYRK, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, cld_m]),
+ Routine(True, True, "3", "syr2k", T, [S,D,C,Z,H], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a symmetric matrix", "Performs the matrix product _C = alpha * A * B^T + alpha * B * A^T + beta * C_ or _C = alpha * A^T * B + alpha * B^T * A + beta * C_, in which _A_ and _B_ are general matrices and _A^T_ and _B^T_ are their transposed versions, _C_ (_n_ by _n_) is the symmetric matrix to be updated, and _alpha_ and _beta_ are scalar values.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
+ Routine(True, True, "3", "her2k", TU, [Ccs,Zzd], ["n","k"], ["layout","triangle","ab_transpose"], ["a","b"], ["c"], [ankab,bnkab,cn],["alpha","beta"], "", "Rank-2K update of a hermitian matrix", "Same operation as xSYR2K, but _C_ is an Hermitian matrix instead.", [ald_trans_n_k, bld_trans_n_k, cld_n]),
+ Routine(True, True, "3", "trmm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Triangular matrix-matrix multiplication", "Performs the matrix product _B = alpha * A * B_ or _B = alpha * B * A_, in which _A_ is a unit or non-unit triangular matrix, _B_ (_m_ by _n_) is the general matrix to be updated, and _alpha_ is a scalar value.", [ald_side_m_n, bld_m]),
+ Routine(False, True, "3", "trsm", T, [S,D,C,Z,H], ["m","n"], ["layout","side","triangle","a_transpose","diagonal"], ["a"], ["b"], [amns,bmn], ["alpha"], "", "Solves a triangular system of equations", "", []),
],
[ # Level X: extra routines (not part of BLAS)
- Routine(True, True, "x", "omatcopy", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a"], ["b"], ["n","n"], ["alpha"], "", "Scaling and out-place transpose/copy (non-BLAS function)", "Performs scaling and out-of-place transposition/copying of matrices according to _B = alpha*op(A)_, in which _A_ is an input matrix (_m_ rows by _n_ columns), _B_ an output matrix, and _alpha_ a scalar value. The operation _op_ can be a normal matrix copy, a transposition or a conjugate transposition.", [ald_m, bld_n]),
+ Routine(True, True, "x", "omatcopy", T, [S,D,C,Z,H], ["m","n"], ["layout","a_transpose"], ["a"], ["b"], [amn,bnma], ["alpha"], "", "Scaling and out-place transpose/copy (non-BLAS function)", "Performs scaling and out-of-place transposition/copying of matrices according to _B = alpha*op(A)_, in which _A_ is an input matrix (_m_ rows by _n_ columns), _B_ an output matrix, and _alpha_ a scalar value. The operation _op_ can be a normal matrix copy, a transposition or a conjugate transposition.", [ald_m, bld_n]),
]]