summaryrefslogtreecommitdiff
path: root/src/kernels/level3
diff options
context:
space:
mode:
authorCedric Nugteren <web@cedricnugteren.nl>2016-09-25 13:52:08 +0200
committerCedric Nugteren <web@cedricnugteren.nl>2016-09-25 13:52:08 +0200
commit669f43aed65ccd4aae9c4a478e994660f3e2a592 (patch)
treed5c9956abcb255c2a5af8386f1ec5f43da21c023 /src/kernels/level3
parent140dc12854dd9521c1420ccba7eb9fb0d50e054e (diff)
Separated the tuning parameters of the new direct GEMM kernel from the indirect version
Diffstat (limited to 'src/kernels/level3')
-rw-r--r--src/kernels/level3/xgemm_direct.opencl358
1 files changed, 213 insertions, 145 deletions
diff --git a/src/kernels/level3/xgemm_direct.opencl b/src/kernels/level3/xgemm_direct.opencl
index fb5972ba..801887dd 100644
--- a/src/kernels/level3/xgemm_direct.opencl
+++ b/src/kernels/level3/xgemm_direct.opencl
@@ -16,68 +16,140 @@
// literal). Comment-out this line for syntax-highlighting when developing.
R"(
+// Parameters set by the tuner or by the database. Here they are given a basic default value in case
+// this kernel file is used outside of the CLBlast library. Note that all parameters here have a
+// suffix 'D' to denote that they are for the 'direct' version of the GEMM kernel.
+#ifndef MWGD
+ #define MWGD 8 // Tile-size in dimension M (e.g. 64, 128)
+#endif
+#ifndef NWGD
+ #define NWGD 8 // Tile-size in dimension N (e.g. 64, 128)
+#endif
+#ifndef KWGD
+ #define KWGD 8 // Tile-size in dimension K (e.g. 8, 16)
+#endif
+#ifndef MDIMCD
+ #define MDIMCD 8 // Threads per workgroup in M-dimension (e.g. 8, 16, 32)
+#endif
+#ifndef NDIMCD
+ #define NDIMCD 8 // Threads per workgroup in N-dimension (e.g. 8, 16, 32)
+#endif
+#ifndef MDIMAD
+ #define MDIMAD 8 // Re-shaped tile dimension of matrix A: KDIMAD * MDIMAD
+#endif
+#ifndef NDIMBD
+ #define NDIMBD 8 // Re-shaped tile dimension of matrix B: KDIMBD * NDIMBD
+#endif
+#ifndef KWID
+ #define KWID 1 // Unroll factor of the KWGD loop (smaller or equal than KWGD)
+#endif
+#ifndef VWMD
+ #define VWMD 1 // Vector width of matrices A and C
+#endif
+#ifndef VWND
+ #define VWND 1 // Vector width of matrix B
+#endif
+
+// Helper parameters based on the above tuning parameters
+#define MWID (MWGD/MDIMCD) // Work per work-item (M-dimension)
+#define NWID (NWGD/NDIMCD) // Work per work-item (N-dimension)
+#define KDIMAD ((MDIMCD*NDIMCD)/(MDIMAD)) // Re-shaped tile dimension of matrix A: KDIMAD * MDIMAD
+#define KDIMBD ((MDIMCD*NDIMCD)/(NDIMBD)) // Re-shaped tile dimension of matrix B: KDIMBD * NDIMBD
+#define MWAD (MWGD/MDIMAD) // Amount of loads-per-thread for matrix A (M-dimension)
+#define KWAD (KWGD/KDIMAD) // Amount of loads-per-thread for matrix A (K-dimension)
+#define KWBD (KWGD/KDIMBD) // Amount of loads-per-thread for matrix B (K-dimension)
+#define NWBD (NWGD/NDIMBD) // Amount of loads-per-thread for matrix B (N-dimension)
+
+// =================================================================================================
+
+// Data-widths in dimension M
+#if VWMD == 1
+ typedef real realMD;
+#elif VWMD == 2
+ typedef real2 realMD;
+#elif VWMD == 4
+ typedef real4 realMD;
+#elif VWMD == 8
+ typedef real8 realMD;
+#elif VWMD == 16
+ typedef real16 realMD;
+#endif
+
+// Data-widths in dimension N
+#if VWND == 1
+ typedef real realND;
+#elif VWND == 2
+ typedef real2 realND;
+#elif VWND == 4
+ typedef real4 realND;
+#elif VWND == 8
+ typedef real8 realND;
+#elif VWND == 16
+ typedef real16 realND;
+#endif
+
// =================================================================================================
// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
// caching the A input matrix.
-inline void GlobalToLocalDirectA(const __global realM* restrict agm, __local real* alm,
+inline void GlobalToLocalDirectA(const __global realMD* restrict agm, __local real* alm,
const int a_ld, const int a_offset, const int tid, const int kwg,
const int a_transpose, const int a_conjugate) {
- const int la0 = tid % MDIMA;
- const int la1 = tid / MDIMA;
+ const int la0 = tid % MDIMAD;
+ const int la1 = tid / MDIMAD;
#pragma unroll
- for (int mia=0; mia<MWA/VWM; ++mia) {
+ for (int mia=0; mia<MWAD/VWMD; ++mia) {
#pragma unroll
- for (int kia=0; kia<KWA; ++kia) {
+ for (int kia=0; kia<KWAD; ++kia) {
// Computes the indices for the global memory
- int mg = mia + la0*(MWA/VWM);
- int kg = kia + la1*KWA;
- int idm = (a_transpose) ? mg + kwg/VWM : mg + GetGroupID0()*(MWG/VWM);
- int idk = (a_transpose) ? kg + GetGroupID0()*MWG : kg + kwg;
+ int mg = mia + la0*(MWAD/VWMD);
+ int kg = kia + la1*KWAD;
+ int idm = (a_transpose) ? mg + kwg/VWMD : mg + GetGroupID0()*(MWGD/VWMD);
+ int idk = (a_transpose) ? kg + GetGroupID0()*MWGD : kg + kwg;
// Loads the data from global memory into the local memory
- const realM avec = agm[idk*(a_ld/VWM) + idm + a_offset];
- #if VWM == 1
- alm[kg*MWG + mg] = avec;
- #elif VWM == 2
- alm[kg*MWG + mg*VWM + 0] = avec.x;
- alm[kg*MWG + mg*VWM + 1] = avec.y;
- #elif VWM == 4
- alm[kg*MWG + mg*VWM + 0] = avec.x;
- alm[kg*MWG + mg*VWM + 1] = avec.y;
- alm[kg*MWG + mg*VWM + 2] = avec.z;
- alm[kg*MWG + mg*VWM + 3] = avec.w;
- #elif VWM == 8
- alm[kg*MWG + mg*VWM + 0] = avec.s0;
- alm[kg*MWG + mg*VWM + 1] = avec.s1;
- alm[kg*MWG + mg*VWM + 2] = avec.s2;
- alm[kg*MWG + mg*VWM + 3] = avec.s3;
- alm[kg*MWG + mg*VWM + 4] = avec.s4;
- alm[kg*MWG + mg*VWM + 5] = avec.s5;
- alm[kg*MWG + mg*VWM + 6] = avec.s6;
- alm[kg*MWG + mg*VWM + 7] = avec.s7;
- #elif VWM == 16
- alm[kg*MWG + mg*VWM + 0] = avec.s0;
- alm[kg*MWG + mg*VWM + 1] = avec.s1;
- alm[kg*MWG + mg*VWM + 2] = avec.s2;
- alm[kg*MWG + mg*VWM + 3] = avec.s3;
- alm[kg*MWG + mg*VWM + 4] = avec.s4;
- alm[kg*MWG + mg*VWM + 5] = avec.s5;
- alm[kg*MWG + mg*VWM + 6] = avec.s6;
- alm[kg*MWG + mg*VWM + 7] = avec.s7;
- alm[kg*MWG + mg*VWM + 8] = avec.s8;
- alm[kg*MWG + mg*VWM + 9] = avec.s9;
- alm[kg*MWG + mg*VWM + 10] = avec.sA;
- alm[kg*MWG + mg*VWM + 11] = avec.sB;
- alm[kg*MWG + mg*VWM + 12] = avec.sC;
- alm[kg*MWG + mg*VWM + 13] = avec.sD;
- alm[kg*MWG + mg*VWM + 14] = avec.sE;
- alm[kg*MWG + mg*VWM + 15] = avec.sF;
+ const realMD avec = agm[idk*(a_ld/VWMD) + idm + a_offset];
+ #if VWMD == 1
+ alm[kg*MWGD + mg] = avec;
+ #elif VWMD == 2
+ alm[kg*MWGD + mg*VWMD + 0] = avec.x;
+ alm[kg*MWGD + mg*VWMD + 1] = avec.y;
+ #elif VWMD == 4
+ alm[kg*MWGD + mg*VWMD + 0] = avec.x;
+ alm[kg*MWGD + mg*VWMD + 1] = avec.y;
+ alm[kg*MWGD + mg*VWMD + 2] = avec.z;
+ alm[kg*MWGD + mg*VWMD + 3] = avec.w;
+ #elif VWMD == 8
+ alm[kg*MWGD + mg*VWMD + 0] = avec.s0;
+ alm[kg*MWGD + mg*VWMD + 1] = avec.s1;
+ alm[kg*MWGD + mg*VWMD + 2] = avec.s2;
+ alm[kg*MWGD + mg*VWMD + 3] = avec.s3;
+ alm[kg*MWGD + mg*VWMD + 4] = avec.s4;
+ alm[kg*MWGD + mg*VWMD + 5] = avec.s5;
+ alm[kg*MWGD + mg*VWMD + 6] = avec.s6;
+ alm[kg*MWGD + mg*VWMD + 7] = avec.s7;
+ #elif VWMD == 16
+ alm[kg*MWGD + mg*VWMD + 0] = avec.s0;
+ alm[kg*MWGD + mg*VWMD + 1] = avec.s1;
+ alm[kg*MWGD + mg*VWMD + 2] = avec.s2;
+ alm[kg*MWGD + mg*VWMD + 3] = avec.s3;
+ alm[kg*MWGD + mg*VWMD + 4] = avec.s4;
+ alm[kg*MWGD + mg*VWMD + 5] = avec.s5;
+ alm[kg*MWGD + mg*VWMD + 6] = avec.s6;
+ alm[kg*MWGD + mg*VWMD + 7] = avec.s7;
+ alm[kg*MWGD + mg*VWMD + 8] = avec.s8;
+ alm[kg*MWGD + mg*VWMD + 9] = avec.s9;
+ alm[kg*MWGD + mg*VWMD + 10] = avec.sA;
+ alm[kg*MWGD + mg*VWMD + 11] = avec.sB;
+ alm[kg*MWGD + mg*VWMD + 12] = avec.sC;
+ alm[kg*MWGD + mg*VWMD + 13] = avec.sD;
+ alm[kg*MWGD + mg*VWMD + 14] = avec.sE;
+ alm[kg*MWGD + mg*VWMD + 15] = avec.sF;
#endif
if (a_conjugate) {
- for (int vm=0; vm<VWM; ++vm) {
- COMPLEX_CONJUGATE(alm[kg*MWG + mg*VWM + vm]);
+ for (int vm=0; vm<VWMD; ++vm) {
+ COMPLEX_CONJUGATE(alm[kg*MWGD + mg*VWMD + vm]);
}
}
}
@@ -85,64 +157,64 @@ inline void GlobalToLocalDirectA(const __global realM* restrict agm, __local rea
}
// Same as above, but now for the B input matrix
-inline void GlobalToLocalDirectB(const __global realN* restrict bgm, __local real* blm,
+inline void GlobalToLocalDirectB(const __global realND* restrict bgm, __local real* blm,
const int b_ld, const int b_offset, const int tid, const int kwg,
const int b_transpose, const int b_conjugate) {
- const int lb0 = tid % NDIMB;
- const int lb1 = tid / NDIMB;
+ const int lb0 = tid % NDIMBD;
+ const int lb1 = tid / NDIMBD;
#pragma unroll
- for (int kib=0; kib<KWB; ++kib) {
+ for (int kib=0; kib<KWBD; ++kib) {
#pragma unroll
- for (int nib=0; nib<NWB/VWN; ++nib) {
+ for (int nib=0; nib<NWBD/VWND; ++nib) {
// Computes the indices for the global memory
- int ng = nib + lb0*(NWB/VWN);
- int kg = kib + lb1*KWB;
- int idn = (b_transpose) ? ng + kwg/VWN : ng + GetGroupID1()*(NWG/VWN);
- int idk = (b_transpose) ? kg + GetGroupID1()*NWG : kg + kwg;
+ int ng = nib + lb0*(NWBD/VWND);
+ int kg = kib + lb1*KWBD;
+ int idn = (b_transpose) ? ng + kwg/VWND : ng + GetGroupID1()*(NWGD/VWND);
+ int idk = (b_transpose) ? kg + GetGroupID1()*NWGD : kg + kwg;
// Loads the data from global memory into the local memory
- const realM bvec = bgm[idk*(b_ld/VWN) + idn + b_offset];
- #if VWN == 1
- blm[kg*NWG + ng] = bvec;
- #elif VWN == 2
- blm[kg*NWG + ng*VWN + 0] = bvec.x;
- blm[kg*NWG + ng*VWN + 1] = bvec.y;
- #elif VWN == 4
- blm[kg*NWG + ng*VWN + 0] = bvec.x;
- blm[kg*NWG + ng*VWN + 1] = bvec.y;
- blm[kg*NWG + ng*VWN + 2] = bvec.z;
- blm[kg*NWG + ng*VWN + 3] = bvec.w;
- #elif VWN == 8
- blm[kg*NWG + ng*VWN + 0] = bvec.s0;
- blm[kg*NWG + ng*VWN + 1] = bvec.s1;
- blm[kg*NWG + ng*VWN + 2] = bvec.s2;
- blm[kg*NWG + ng*VWN + 3] = bvec.s3;
- blm[kg*NWG + ng*VWN + 4] = bvec.s4;
- blm[kg*NWG + ng*VWN + 5] = bvec.s5;
- blm[kg*NWG + ng*VWN + 6] = bvec.s6;
- blm[kg*NWG + ng*VWN + 7] = bvec.s7;
- #elif VWN == 16
- blm[kg*NWG + ng*VWN + 0] = bvec.s0;
- blm[kg*NWG + ng*VWN + 1] = bvec.s1;
- blm[kg*NWG + ng*VWN + 2] = bvec.s2;
- blm[kg*NWG + ng*VWN + 3] = bvec.s3;
- blm[kg*NWG + ng*VWN + 4] = bvec.s4;
- blm[kg*NWG + ng*VWN + 5] = bvec.s5;
- blm[kg*NWG + ng*VWN + 6] = bvec.s6;
- blm[kg*NWG + ng*VWN + 7] = bvec.s7;
- blm[kg*NWG + ng*VWN + 8] = bvec.s8;
- blm[kg*NWG + ng*VWN + 9] = bvec.s9;
- blm[kg*NWG + ng*VWN + 10] = bvec.sA;
- blm[kg*NWG + ng*VWN + 11] = bvec.sB;
- blm[kg*NWG + ng*VWN + 12] = bvec.sC;
- blm[kg*NWG + ng*VWN + 13] = bvec.sD;
- blm[kg*NWG + ng*VWN + 14] = bvec.sE;
- blm[kg*NWG + ng*VWN + 15] = bvec.sF;
+ const realMD bvec = bgm[idk*(b_ld/VWND) + idn + b_offset];
+ #if VWND == 1
+ blm[kg*NWGD + ng] = bvec;
+ #elif VWND == 2
+ blm[kg*NWGD + ng*VWND + 0] = bvec.x;
+ blm[kg*NWGD + ng*VWND + 1] = bvec.y;
+ #elif VWND == 4
+ blm[kg*NWGD + ng*VWND + 0] = bvec.x;
+ blm[kg*NWGD + ng*VWND + 1] = bvec.y;
+ blm[kg*NWGD + ng*VWND + 2] = bvec.z;
+ blm[kg*NWGD + ng*VWND + 3] = bvec.w;
+ #elif VWND == 8
+ blm[kg*NWGD + ng*VWND + 0] = bvec.s0;
+ blm[kg*NWGD + ng*VWND + 1] = bvec.s1;
+ blm[kg*NWGD + ng*VWND + 2] = bvec.s2;
+ blm[kg*NWGD + ng*VWND + 3] = bvec.s3;
+ blm[kg*NWGD + ng*VWND + 4] = bvec.s4;
+ blm[kg*NWGD + ng*VWND + 5] = bvec.s5;
+ blm[kg*NWGD + ng*VWND + 6] = bvec.s6;
+ blm[kg*NWGD + ng*VWND + 7] = bvec.s7;
+ #elif VWND == 16
+ blm[kg*NWGD + ng*VWND + 0] = bvec.s0;
+ blm[kg*NWGD + ng*VWND + 1] = bvec.s1;
+ blm[kg*NWGD + ng*VWND + 2] = bvec.s2;
+ blm[kg*NWGD + ng*VWND + 3] = bvec.s3;
+ blm[kg*NWGD + ng*VWND + 4] = bvec.s4;
+ blm[kg*NWGD + ng*VWND + 5] = bvec.s5;
+ blm[kg*NWGD + ng*VWND + 6] = bvec.s6;
+ blm[kg*NWGD + ng*VWND + 7] = bvec.s7;
+ blm[kg*NWGD + ng*VWND + 8] = bvec.s8;
+ blm[kg*NWGD + ng*VWND + 9] = bvec.s9;
+ blm[kg*NWGD + ng*VWND + 10] = bvec.sA;
+ blm[kg*NWGD + ng*VWND + 11] = bvec.sB;
+ blm[kg*NWGD + ng*VWND + 12] = bvec.sC;
+ blm[kg*NWGD + ng*VWND + 13] = bvec.sD;
+ blm[kg*NWGD + ng*VWND + 14] = bvec.sE;
+ blm[kg*NWGD + ng*VWND + 15] = bvec.sF;
#endif
if (b_conjugate) {
- for (int vn=0; vn<VWN; ++vn) {
- COMPLEX_CONJUGATE(blm[kg*NWG + ng*VWN + vn]);
+ for (int vn=0; vn<VWND; ++vn) {
+ COMPLEX_CONJUGATE(blm[kg*NWGD + ng*VWND + vn]);
}
}
}
@@ -153,23 +225,23 @@ inline void GlobalToLocalDirectB(const __global realN* restrict bgm, __local rea
// Caches on-chip local memory into per-thread private memory (registers). This function is specific
// for caching the A input matrix.
-inline void LocalToPrivateDirectA(__local real* alm, real apm[MWI], const int kg,
+inline void LocalToPrivateDirectA(__local real* alm, real apm[MWID], const int kg,
const int a_transpose) {
#pragma unroll
- for (int mi=0; mi<MWI; ++mi) {
- const int mg = mi + get_local_id(0)*MWI;
- const int index = (a_transpose) ? mg*KWG + kg : kg*MWG + mg;
+ for (int mi=0; mi<MWID; ++mi) {
+ const int mg = mi + get_local_id(0)*MWID;
+ const int index = (a_transpose) ? mg*KWGD + kg : kg*MWGD + mg;
apm[mi] = alm[index];
}
}
// Same as above, but now for the B input matrix
-inline void LocalToPrivateDirectB(__local real* blm, real bpm[NWI], const int kg,
+inline void LocalToPrivateDirectB(__local real* blm, real bpm[NWID], const int kg,
const int b_transpose) {
#pragma unroll
- for (int ni=0; ni<NWI; ++ni) {
- const int ng = ni + get_local_id(1)*NWI;
- const int index = (b_transpose) ? ng*KWG + kg : kg*NWG + ng;
+ for (int ni=0; ni<NWID; ++ni) {
+ const int ng = ni + get_local_id(1)*NWID;
+ const int index = (b_transpose) ? ng*KWGD + kg : kg*NWGD + ng;
bpm[ni] = blm[index];
}
}
@@ -177,11 +249,11 @@ inline void LocalToPrivateDirectB(__local real* blm, real bpm[NWI], const int kg
// =================================================================================================
// Initializes the accumulation registers to zero
-inline void InitAccRegistersDirect(real cpm[NWI][MWI]) {
+inline void InitAccRegistersDirect(real cpm[NWID][MWID]) {
#pragma unroll
- for (int mi=0; mi<MWI; ++mi) {
+ for (int mi=0; mi<MWID; ++mi) {
#pragma unroll
- for (int ni=0; ni<NWI; ++ni) {
+ for (int ni=0; ni<NWID; ++ni) {
SetToZero(cpm[ni][mi]);
}
}
@@ -190,11 +262,11 @@ inline void InitAccRegistersDirect(real cpm[NWI][MWI]) {
// =================================================================================================
// Performs the actual computation: Cpm += Apm * Bpm
-inline void MultiplyAccumulateDirect(real cpm[NWI][MWI], real apm[MWI], real bpm[NWI]) {
+inline void MultiplyAccumulateDirect(real cpm[NWID][MWID], real apm[MWID], real bpm[NWID]) {
#pragma unroll
- for (int ni=0; ni<NWI; ++ni) {
+ for (int ni=0; ni<NWID; ++ni) {
#pragma unroll
- for (int mi=0; mi<MWI; ++mi) {
+ for (int mi=0; mi<MWID; ++mi) {
MultiplyAdd(cpm[ni][mi], apm[mi], bpm[ni]);
}
}
@@ -204,18 +276,18 @@ inline void MultiplyAccumulateDirect(real cpm[NWI][MWI], real apm[MWI], real bpm
// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
-inline void StoreResultsDirect(__global real* cgm, real cpm[NWI][MWI],
+inline void StoreResultsDirect(__global real* cgm, real cpm[NWID][MWID],
const int kSizeM, const int kSizeN,
const real alpha, const real beta,
const int c_ld, const int c_offset, const int c_transpose) {
#pragma unroll
- for (int ni=0; ni<NWI; ++ni) {
+ for (int ni=0; ni<NWID; ++ni) {
#pragma unroll
- for (int mi=0; mi<MWI; ++mi) {
- int mg = mi + get_local_id(0)*MWI;
- int ng = ni + get_local_id(1)*NWI;
- int idm = mg + GetGroupID0() * MWG;
- int idn = ng + GetGroupID1() * NWG;
+ for (int mi=0; mi<MWID; ++mi) {
+ int mg = mi + get_local_id(0)*MWID;
+ int ng = ni + get_local_id(1)*NWID;
+ int idm = mg + GetGroupID0() * MWGD;
+ int idn = ng + GetGroupID1() * NWGD;
// Determines the destination index
const int c_index = (c_transpose) ? idm*c_ld + idn : idn*c_ld + idm;
@@ -231,12 +303,12 @@ inline void StoreResultsDirect(__global real* cgm, real cpm[NWI][MWI],
// =================================================================================================
// Main entry point of the kernel. This is the direct version without restrictions.
-__attribute__((reqd_work_group_size(MDIMC, NDIMC, 1)))
+__attribute__((reqd_work_group_size(MDIMCD, NDIMCD, 1)))
__kernel void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
const real_arg arg_alpha,
const real_arg arg_beta,
- const __global realM* restrict agm, const int a_offset, const int a_ld,
- const __global realN* restrict bgm, const int b_offset, const int b_ld,
+ const __global realMD* restrict agm, const int a_offset, const int a_ld,
+ const __global realND* restrict bgm, const int b_offset, const int b_ld,
__global real* cgm, const int c_offset, const int c_ld,
const int a_transpose, const int b_transpose, const int c_transpose,
const int a_conjugate, const int b_conjugate) {
@@ -248,40 +320,40 @@ __kernel void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
const __global real* restrict bgms = (const __global real* restrict) bgm;
// Allocates workgroup-private memory (local memory)
- __local real alm[KWG * MWG];
- __local real blm[KWG * NWG];
+ __local real alm[KWGD * MWGD];
+ __local real blm[KWGD * NWGD];
// Combined thread identifier (volatile to disable caching)
- volatile int tid = get_local_id(0) + MDIMC*get_local_id(1);
+ volatile int tid = get_local_id(0) + MDIMCD*get_local_id(1);
// Allocates workitem-private memory (registers)
- real apm[MWI];
- real bpm[NWI];
- real cpm[NWI][MWI];
+ real apm[MWID];
+ real bpm[NWID];
+ real cpm[NWID][MWID];
// Initializes the accumulation registers
InitAccRegistersDirect(cpm);
// The faster version of GEMM is not allowed on the (incomplete) borders. Therefore, this section
- // processes only the main parts: output blocks of MWG by NWG.
- const int idm = get_local_id(0) * MWI + GetGroupID0() * MWG;
- const int idn = get_local_id(1) * NWI + GetGroupID1() * NWG;
- if ((idm < (kSizeM/MWG)*MWG) && (idn < (kSizeN/NWG)*NWG) &&
- (a_ld % VWM == 0) && (b_ld % VWN == 0)) {
+ // processes only the main parts: output blocks of MWGD by NWGD.
+ const int idm = get_local_id(0) * MWID + GetGroupID0() * MWGD;
+ const int idn = get_local_id(1) * NWID + GetGroupID1() * NWGD;
+ if ((idm < (kSizeM/MWGD)*MWGD) && (idn < (kSizeN/NWGD)*NWGD) &&
+ (a_ld % VWMD == 0) && (b_ld % VWND == 0)) {
// Loops over all complete workgroup tiles
int kwg = 0;
- for (; kwg < (kSizeK/KWG) * KWG; kwg+=KWG) {
+ for (; kwg < (kSizeK/KWGD) * KWGD; kwg+=KWGD) {
// Loads data: off-chip --> local (matrix A and B)
GlobalToLocalDirectA(agm, alm, a_ld, a_offset, tid, kwg, a_transpose, a_conjugate);
GlobalToLocalDirectB(bgm, blm, b_ld, b_offset, tid, kwg, b_transpose, b_conjugate);
barrier(CLK_LOCAL_MEM_FENCE);
- // Loops over all workitem tiles, unrolled by a factor KWI
- for (int pwi=0; pwi<KWG; pwi+=KWI) {
+ // Loops over all workitem tiles, unrolled by a factor KWID
+ for (int pwi=0; pwi<KWGD; pwi+=KWID) {
#pragma unroll
- for (int pit=0; pit<KWI; ++pit) {
+ for (int pit=0; pit<KWID; ++pit) {
int kg = pwi + pit;
// Loads data: local --> private (matrix A)
@@ -303,7 +375,7 @@ __kernel void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
// Loads A into register memory
#pragma unroll
- for (int mi=0; mi<MWI; ++mi) {
+ for (int mi=0; mi<MWID; ++mi) {
const int a_index = (a_transpose) ? (idm + mi)*a_ld + idk : idk*a_ld + (idm + mi);
apm[mi] = agms[a_index + a_offset];
if (a_conjugate) { COMPLEX_CONJUGATE(apm[mi]); }
@@ -311,7 +383,7 @@ __kernel void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
// Loads B into register memory
#pragma unroll
- for (int ni=0; ni<NWI; ++ni) {
+ for (int ni=0; ni<NWID; ++ni) {
const int b_index = (b_transpose) ? (idn + ni)*b_ld + idk : idk*b_ld + (idn + ni);
bpm[ni] = bgms[b_index + b_offset];
if (b_conjugate) { COMPLEX_CONJUGATE(bpm[ni]); }
@@ -321,10 +393,6 @@ __kernel void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
MultiplyAccumulateDirect(cpm, apm, bpm);
}
- #if GLOBAL_MEM_FENCE == 1
- barrier(CLK_GLOBAL_MEM_FENCE);
- #endif
-
// Stores a tile of results and performs the multiplication with alpha and beta
StoreResultsDirect(cgm, cpm, kSizeM, kSizeN, alpha, beta, c_ld, c_offset, c_transpose);
}
@@ -337,7 +405,7 @@ __kernel void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
// Loads A into register memory
#pragma unroll
- for (int mi=0; mi<MWI; ++mi) {
+ for (int mi=0; mi<MWID; ++mi) {
if (idm + mi < kSizeM) {
const int a_index = (a_transpose) ? (idm + mi)*a_ld + idk : idk*a_ld + (idm + mi);
apm[mi] = agms[a_index + a_offset];
@@ -350,7 +418,7 @@ __kernel void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
// Loads B into register memory
#pragma unroll
- for (int ni=0; ni<NWI; ++ni) {
+ for (int ni=0; ni<NWID; ++ni) {
if (idn + ni < kSizeN) {
const int b_index = (b_transpose) ? (idn + ni)*b_ld + idk : idk*b_ld + (idn + ni);
bpm[ni] = bgms[b_index + b_offset];
@@ -367,9 +435,9 @@ __kernel void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
// Stores the results
#pragma unroll
- for (int ni=0; ni<NWI; ++ni) {
+ for (int ni=0; ni<NWID; ++ni) {
#pragma unroll
- for (int mi=0; mi<MWI; ++mi) {
+ for (int mi=0; mi<MWID; ++mi) {
if ((idm + mi) < kSizeM && (idn + ni) < kSizeN) {
// Determines the destination index