summaryrefslogtreecommitdiff
path: root/src/routines/level2/xher.cpp
diff options
context:
space:
mode:
authorIvan Shapovalov <intelfx@intelfx.name>2016-10-22 05:14:19 +0300
committerIvan Shapovalov <intelfx@intelfx.name>2016-10-22 08:45:25 +0300
commitb98af44fcf89b9946e1de438b1f5527e6bf28905 (patch)
treefbd5ec2ab1e418830b88e5de42279845911ea0da /src/routines/level2/xher.cpp
parent5d03d48f7aaf38d3b28bad612638d2d9db8ebee0 (diff)
treewide: use C++ exceptions properly
Since the codebase is designed around proper C++ idioms such as RAII, it makes sense to only use C++ exceptions internally instead of mixing exceptions and error codes. The exceptions are now caught at top level to preserve compatibility with the existing error code-based API. Note that we deliberately do not catch C++ runtime errors (such as `std::bad_alloc`) nor logic errors (aka failed assertions) because no actual handling can ever happen for such errors. However, in the C interface we do catch _all_ exceptions (...) and convert them into a wild-card error code.
Diffstat (limited to 'src/routines/level2/xher.cpp')
-rw-r--r--src/routines/level2/xher.cpp73
1 files changed, 32 insertions, 41 deletions
diff --git a/src/routines/level2/xher.cpp b/src/routines/level2/xher.cpp
index 6dd95938..4cf27702 100644
--- a/src/routines/level2/xher.cpp
+++ b/src/routines/level2/xher.cpp
@@ -41,15 +41,15 @@ template <> half Xher<half,half>::GetAlpha(const half alpha) { return alpha; }
// The main routine
template <typename T, typename U>
-StatusCode Xher<T,U>::DoHer(const Layout layout, const Triangle triangle,
- const size_t n,
- const U alpha,
- const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
- const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
- const bool packed) {
+void Xher<T,U>::DoHer(const Layout layout, const Triangle triangle,
+ const size_t n,
+ const U alpha,
+ const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
+ const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
+ const bool packed) {
// Makes sure the dimensions are larger than zero
- if (n == 0) { return StatusCode::kInvalidDimension; }
+ if (n == 0) { throw BLASError(StatusCode::kInvalidDimension); }
// The data is either in the upper or lower triangle
const auto is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
@@ -57,47 +57,38 @@ StatusCode Xher<T,U>::DoHer(const Layout layout, const Triangle triangle,
const auto is_rowmajor = (layout == Layout::kRowMajor);
// Tests the matrix and the vectors for validity
- auto status = StatusCode::kSuccess;
- if (packed) { status = TestMatrixAP(n, a_buffer, a_offset); }
- else { status = TestMatrixA(n, n, a_buffer, a_offset, a_ld); }
- if (ErrorIn(status)) { return status; }
- status = TestVectorX(n, x_buffer, x_offset, x_inc);
- if (ErrorIn(status)) { return status; }
+ if (packed) { TestMatrixAP(n, a_buffer, a_offset); }
+ else { TestMatrixA(n, n, a_buffer, a_offset, a_ld); }
+ TestVectorX(n, x_buffer, x_offset, x_inc);
// If alpha is zero an update is not required
- if (alpha == U{0}) { return StatusCode::kSuccess; }
+ if (alpha == U{0}) { return; }
// Creates a matching version of alpha
const auto matching_alpha = GetAlpha(alpha);
// Retrieves the kernel from the compiled binary
- try {
- const auto program = GetProgramFromCache(context_, PrecisionValue<T>(), routine_name_);
- auto kernel = Kernel(program, "Xher");
-
- // Sets the kernel arguments
- kernel.SetArgument(0, static_cast<int>(n));
- kernel.SetArgument(1, GetRealArg(matching_alpha));
- kernel.SetArgument(2, x_buffer());
- kernel.SetArgument(3, static_cast<int>(x_offset));
- kernel.SetArgument(4, static_cast<int>(x_inc));
- kernel.SetArgument(5, a_buffer());
- kernel.SetArgument(6, static_cast<int>(a_offset));
- kernel.SetArgument(7, static_cast<int>(a_ld));
- kernel.SetArgument(8, static_cast<int>(is_upper));
- kernel.SetArgument(9, static_cast<int>(is_rowmajor));
-
- // Launches the kernel
- auto global_one = Ceil(CeilDiv(n, db_["WPT"]), db_["WGS1"]);
- auto global_two = Ceil(CeilDiv(n, db_["WPT"]), db_["WGS2"]);
- auto global = std::vector<size_t>{global_one, global_two};
- auto local = std::vector<size_t>{db_["WGS1"], db_["WGS2"]};
- status = RunKernel(kernel, queue_, device_, global, local, event_);
- if (ErrorIn(status)) { return status; }
-
- // Succesfully finished the computation
- return StatusCode::kSuccess;
- } catch (...) { return StatusCode::kInvalidKernel; }
+ const auto program = GetProgramFromCache(context_, PrecisionValue<T>(), routine_name_);
+ auto kernel = Kernel(program, "Xher");
+
+ // Sets the kernel arguments
+ kernel.SetArgument(0, static_cast<int>(n));
+ kernel.SetArgument(1, GetRealArg(matching_alpha));
+ kernel.SetArgument(2, x_buffer());
+ kernel.SetArgument(3, static_cast<int>(x_offset));
+ kernel.SetArgument(4, static_cast<int>(x_inc));
+ kernel.SetArgument(5, a_buffer());
+ kernel.SetArgument(6, static_cast<int>(a_offset));
+ kernel.SetArgument(7, static_cast<int>(a_ld));
+ kernel.SetArgument(8, static_cast<int>(is_upper));
+ kernel.SetArgument(9, static_cast<int>(is_rowmajor));
+
+ // Launches the kernel
+ auto global_one = Ceil(CeilDiv(n, db_["WPT"]), db_["WGS1"]);
+ auto global_two = Ceil(CeilDiv(n, db_["WPT"]), db_["WGS2"]);
+ auto global = std::vector<size_t>{global_one, global_two};
+ auto local = std::vector<size_t>{db_["WGS1"], db_["WGS2"]};
+ RunKernel(kernel, queue_, device_, global, local, event_);
}
// =================================================================================================