summaryrefslogtreecommitdiff
path: root/src/routines/level2
diff options
context:
space:
mode:
authorCNugteren <web@cedricnugteren.nl>2015-09-18 17:46:41 +0200
committerCNugteren <web@cedricnugteren.nl>2015-09-18 17:46:41 +0200
commit93dddda63e4345961a779ee125d748c1eeef4769 (patch)
treeecb99fedbe765152259dec595833431b703e2fb3 /src/routines/level2
parent4507ba4997cd546418eae0972c018073ac7b36aa (diff)
Improved the organization and performance of level 2 routines
Diffstat (limited to 'src/routines/level2')
-rw-r--r--src/routines/level2/xgbmv.cc80
-rw-r--r--src/routines/level2/xgemv.cc55
-rw-r--r--src/routines/level2/xhemv.cc62
-rw-r--r--src/routines/level2/xsymv.cc62
4 files changed, 83 insertions, 176 deletions
diff --git a/src/routines/level2/xgbmv.cc b/src/routines/level2/xgbmv.cc
index eac208b3..8657c254 100644
--- a/src/routines/level2/xgbmv.cc
+++ b/src/routines/level2/xgbmv.cc
@@ -37,72 +37,22 @@ StatusCode Xgbmv<T>::DoGbmv(const Layout layout, const Transpose a_transpose,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc) {
- // Makes sure all dimensions are larger than zero
- if (n == 0 || m == 0) { return StatusCode::kInvalidDimension; }
-
- //
+ // Reverses the upper and lower band count
auto rotated = (layout == Layout::kRowMajor);
- auto t_one = (rotated) ? n : m;
- auto t_two = (rotated) ? m : n;
- auto a_one = kl+ku+1;
- auto a_two = (rotated) ? m : n;
-
- // Checks for validity of the A matrix
- auto status = StatusCode::kSuccess;
- if (a_ld < a_one) { return StatusCode::kInvalidLeadDimA; }
- try {
- auto required_size = (a_ld*a_two + a_offset)*sizeof(T);
- auto buffer_size = a_buffer.GetSize();
- if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryA; }
- } catch (...) { return StatusCode::kInvalidMatrixA; }
-
- // Temporary buffer to generalize the input matrix
- try {
- auto t_buffer = Buffer<T>(context_, t_one*t_two);
-
- // Creates a general matrix from the input to be able to run the regular Xgemv routine
- try {
- auto& program = GetProgramFromCache();
- auto kernel = Kernel(program, "GeneralBandedToGeneral");
-
- // Sets the arguments for the matrix transform kernel
- kernel.SetArgument(0, static_cast<int>(a_one));
- kernel.SetArgument(1, static_cast<int>(a_two));
- kernel.SetArgument(2, static_cast<int>(a_ld));
- kernel.SetArgument(3, static_cast<int>(a_offset));
- kernel.SetArgument(4, a_buffer());
- kernel.SetArgument(5, static_cast<int>(t_one));
- kernel.SetArgument(6, static_cast<int>(t_two));
- kernel.SetArgument(7, static_cast<int>(t_one));
- kernel.SetArgument(8, static_cast<int>(0));
- kernel.SetArgument(9, t_buffer());
- kernel.SetArgument(10, static_cast<int>(layout));
- if (rotated) {
- kernel.SetArgument(11, static_cast<int>(ku));
- kernel.SetArgument(12, static_cast<int>(kl));
- }
- else {
- kernel.SetArgument(11, static_cast<int>(kl));
- kernel.SetArgument(12, static_cast<int>(ku));
- }
-
- // Uses the common matrix-transforms thread configuration
- auto global = std::vector<size_t>{Ceil(CeilDiv(t_one, db_["PAD_WPTX"]), db_["PAD_DIMX"]),
- Ceil(CeilDiv(t_two, db_["PAD_WPTY"]), db_["PAD_DIMY"])};
- auto local = std::vector<size_t>{db_["PAD_DIMX"], db_["PAD_DIMY"]};
- status = RunKernel(kernel, global, local);
- if (ErrorIn(status)) { return status; }
-
- // Runs the regular Xgemv code
- status = DoGemv(layout, a_transpose, m, n, alpha,
- t_buffer, 0, t_one,
- x_buffer, x_offset, x_inc, beta,
- y_buffer, y_offset, y_inc);
-
- // Return the status of the Xgemv routine
- return status;
- } catch (...) { return StatusCode::kInvalidKernel; }
- } catch (...) { return StatusCode::kTempBufferAllocFailure; }
+ auto kl_real = (rotated) ? ku : kl;
+ auto ku_real = (rotated) ? kl : ku;
+
+ // Runs the generic matrix-vector multiplication, disabling the use of fast vectorized kernels.
+ // The specific hermitian matrix-accesses are implemented in the kernel guarded by the
+ // ROUTINE_GBMV define.
+ bool fast_kernels = false;
+ return MatVec(layout, a_transpose,
+ m, n, alpha,
+ a_buffer, a_offset, a_ld,
+ x_buffer, x_offset, x_inc, beta,
+ y_buffer, y_offset, y_inc,
+ fast_kernels, fast_kernels,
+ false, kl_real, ku_real);
}
// =================================================================================================
diff --git a/src/routines/level2/xgemv.cc b/src/routines/level2/xgemv.cc
index e52d2f20..6e2303c0 100644
--- a/src/routines/level2/xgemv.cc
+++ b/src/routines/level2/xgemv.cc
@@ -32,9 +32,6 @@ template <typename T>
Xgemv<T>::Xgemv(Queue &queue, Event &event, const std::string &name):
Routine<T>(queue, event, name, {"Pad", "Xgemv"}, precision_) {
source_string_ =
- #include "../../kernels/pad.opencl" // TODO: replace
- #include "../../kernels/matrix_transforms/transforms.opencl"
- #include "../../kernels/matrix_transforms/gbgemt.opencl"
#include "../../kernels/level2/xgemv.opencl"
;
}
@@ -51,6 +48,30 @@ StatusCode Xgemv<T>::DoGemv(const Layout layout, const Transpose a_transpose,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc) {
+ // Performs the matrix-vector multiplication
+ return MatVec(layout, a_transpose,
+ m, n, alpha,
+ a_buffer, a_offset, a_ld,
+ x_buffer, x_offset, x_inc, beta,
+ y_buffer, y_offset, y_inc,
+ true, true,
+ false, 0, 0); // N/A for this routine
+}
+
+// =================================================================================================
+
+// The generic implementation, also suited for other (non general) matrix-vector multiplications
+template <typename T>
+StatusCode Xgemv<T>::MatVec(const Layout layout, const Transpose a_transpose,
+ const size_t m, const size_t n,
+ const T alpha,
+ const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
+ const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
+ const T beta,
+ const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc,
+ bool fast_kernel, bool fast_kernel_rot, bool reversed,
+ const size_t kl, const size_t ku) {
+
// Makes sure all dimensions are larger than zero
if (m == 0 || n == 0) { return StatusCode::kInvalidDimension; }
@@ -64,6 +85,11 @@ StatusCode Xgemv<T>::DoGemv(const Layout layout, const Transpose a_transpose,
auto m_real = (a_transposed) ? n : m;
auto n_real = (a_transposed) ? m : n;
+ // Special adjustments for banded matrices
+ if (kl != 0 || ku != 0) {
+ a_one = kl+ku+1;
+ }
+
// Determines whether the kernel needs to perform rotated access ('^' is the XOR operator)
auto a_rotated = a_transposed ^ a_altlayout;
@@ -79,26 +105,26 @@ StatusCode Xgemv<T>::DoGemv(const Layout layout, const Transpose a_transpose,
if (ErrorIn(status)) { return status; }
// Determines whether or not the fast-version can be used
- bool use_fast_kernel = (a_offset == 0) && (a_rotated == 0) && (a_conjugate == 0) &&
- IsMultiple(m, db_["WGS2"]*db_["WPT2"]) &&
- IsMultiple(n, db_["WGS2"]) &&
- IsMultiple(a_ld, db_["VW2"]);
- bool use_fast_kernel_rot = (a_offset == 0) && (a_rotated == 1) && (a_conjugate == 0) &&
- IsMultiple(m, db_["WGS3"]*db_["WPT3"]) &&
- IsMultiple(n, db_["WGS3"]) &&
- IsMultiple(a_ld, db_["VW3"]);
+ fast_kernel = fast_kernel && (a_offset == 0) && (a_rotated == 0) && (a_conjugate == 0) &&
+ IsMultiple(m, db_["WGS2"]*db_["WPT2"]) &&
+ IsMultiple(n, db_["WGS2"]) &&
+ IsMultiple(a_ld, db_["VW2"]);
+ fast_kernel_rot = fast_kernel_rot && (a_offset == 0) && (a_rotated == 1) && (a_conjugate == 0) &&
+ IsMultiple(m, db_["WGS3"]*db_["WPT3"]) &&
+ IsMultiple(n, db_["WGS3"]) &&
+ IsMultiple(a_ld, db_["VW3"]);
// If possible, run the fast-version (rotated or non-rotated) of the kernel
auto kernel_name = "Xgemv";
auto m_ceiled = Ceil(m_real, db_["WGS1"]*db_["WPT1"]);
auto global_size = m_ceiled / db_["WPT1"];
auto local_size = db_["WGS1"];
- if (use_fast_kernel) {
+ if (fast_kernel) {
kernel_name = "XgemvFast";
global_size = m_real / db_["WPT2"];
local_size = db_["WGS2"];
}
- if (use_fast_kernel_rot) {
+ if (fast_kernel_rot) {
kernel_name = "XgemvFastRot";
global_size = m_real / db_["WPT3"];
local_size = db_["WGS3"];
@@ -125,6 +151,9 @@ StatusCode Xgemv<T>::DoGemv(const Layout layout, const Transpose a_transpose,
kernel.SetArgument(12, static_cast<int>(y_offset));
kernel.SetArgument(13, static_cast<int>(y_inc));
kernel.SetArgument(14, static_cast<int>(a_conjugate));
+ kernel.SetArgument(15, static_cast<int>(reversed)); // only used for SYMV/HEMV routines
+ kernel.SetArgument(16, static_cast<int>(kl)); // only used for GBMV routines
+ kernel.SetArgument(17, static_cast<int>(ku)); // only used for GBMV routines
// Launches the kernel
auto global = std::vector<size_t>{global_size};
diff --git a/src/routines/level2/xhemv.cc b/src/routines/level2/xhemv.cc
index 2d92e45f..917bf9b6 100644
--- a/src/routines/level2/xhemv.cc
+++ b/src/routines/level2/xhemv.cc
@@ -37,57 +37,21 @@ StatusCode Xhemv<T>::DoHemv(const Layout layout, const Triangle triangle,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc) {
- // Makes sure all dimensions are larger than zero
- if (n == 0) { return StatusCode::kInvalidDimension; }
-
- // Checks for validity of the squared A matrix
- auto status = TestMatrixA(n, n, a_buffer, a_offset, a_ld, sizeof(T));
- if (ErrorIn(status)) { return status; }
-
- // Determines which kernel to run based on the layout (the Xgemv kernel assumes column-major as
- // default) and on whether we are dealing with an upper or lower triangle of the hermitian matrix
- bool is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
+ // The data is either in the upper or lower triangle
+ bool reversed = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
(triangle == Triangle::kLower && layout == Layout::kRowMajor));
- auto kernel_name = (is_upper) ? "HermUpperToSquared" : "HermLowerToSquared";
-
- // Temporary buffer for a copy of the hermitian matrix
- try {
- auto temp_herm = Buffer<T>(context_, n*n);
-
- // Creates a general matrix from the hermitian matrix to be able to run the regular Xgemv
- // routine afterwards
- try {
- auto& program = GetProgramFromCache();
- auto kernel = Kernel(program, kernel_name);
-
- // Sets the arguments for the hermitian-to-squared kernel
- kernel.SetArgument(0, static_cast<int>(n));
- kernel.SetArgument(1, static_cast<int>(a_ld));
- kernel.SetArgument(2, static_cast<int>(a_offset));
- kernel.SetArgument(3, a_buffer());
- kernel.SetArgument(4, static_cast<int>(n));
- kernel.SetArgument(5, static_cast<int>(n));
- kernel.SetArgument(6, static_cast<int>(0));
- kernel.SetArgument(7, temp_herm());
-
- // Uses the common padding kernel's thread configuration. This is allowed, since the
- // hermitian-to-squared kernel uses the same parameters.
- auto global = std::vector<size_t>{Ceil(CeilDiv(n, db_["PAD_WPTX"]), db_["PAD_DIMX"]),
- Ceil(CeilDiv(n, db_["PAD_WPTY"]), db_["PAD_DIMY"])};
- auto local = std::vector<size_t>{db_["PAD_DIMX"], db_["PAD_DIMY"]};
- status = RunKernel(kernel, global, local);
- if (ErrorIn(status)) { return status; }
-
- // Runs the regular Xgemv code
- status = DoGemv(layout, Transpose::kNo, n, n, alpha,
- temp_herm, 0, n,
- x_buffer, x_offset, x_inc, beta,
- y_buffer, y_offset, y_inc);
- // Return the status of the Xgemv routine
- return status;
- } catch (...) { return StatusCode::kInvalidKernel; }
- } catch (...) { return StatusCode::kTempBufferAllocFailure; }
+ // Runs the generic matrix-vector multiplication, disabling the use of fast vectorized kernels.
+ // The specific hermitian matrix-accesses are implemented in the kernel guarded by the
+ // ROUTINE_HEMV define.
+ bool fast_kernels = false;
+ return MatVec(layout, Transpose::kNo,
+ n, n, alpha,
+ a_buffer, a_offset, a_ld,
+ x_buffer, x_offset, x_inc, beta,
+ y_buffer, y_offset, y_inc,
+ fast_kernels, fast_kernels,
+ reversed, 0, 0);
}
// =================================================================================================
diff --git a/src/routines/level2/xsymv.cc b/src/routines/level2/xsymv.cc
index 2ccb51f6..15c91f47 100644
--- a/src/routines/level2/xsymv.cc
+++ b/src/routines/level2/xsymv.cc
@@ -37,57 +37,21 @@ StatusCode Xsymv<T>::DoSymv(const Layout layout, const Triangle triangle,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc) {
- // Makes sure all dimensions are larger than zero
- if (n == 0) { return StatusCode::kInvalidDimension; }
-
- // Checks for validity of the squared A matrix
- auto status = TestMatrixA(n, n, a_buffer, a_offset, a_ld, sizeof(T));
- if (ErrorIn(status)) { return status; }
-
- // Determines which kernel to run based on the layout (the Xgemv kernel assumes column-major as
- // default) and on whether we are dealing with an upper or lower triangle of the symmetric matrix
- bool is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
+ // The data is either in the upper or lower triangle
+ bool reversed = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
(triangle == Triangle::kLower && layout == Layout::kRowMajor));
- auto kernel_name = (is_upper) ? "SymmUpperToSquared" : "SymmLowerToSquared";
-
- // Temporary buffer for a copy of the symmetric matrix
- try {
- auto temp_symm = Buffer<T>(context_, n*n);
-
- // Creates a general matrix from the symmetric matrix to be able to run the regular Xgemv
- // routine afterwards
- try {
- auto& program = GetProgramFromCache();
- auto kernel = Kernel(program, kernel_name);
-
- // Sets the arguments for the symmetric-to-squared kernel
- kernel.SetArgument(0, static_cast<int>(n));
- kernel.SetArgument(1, static_cast<int>(a_ld));
- kernel.SetArgument(2, static_cast<int>(a_offset));
- kernel.SetArgument(3, a_buffer());
- kernel.SetArgument(4, static_cast<int>(n));
- kernel.SetArgument(5, static_cast<int>(n));
- kernel.SetArgument(6, static_cast<int>(0));
- kernel.SetArgument(7, temp_symm());
-
- // Uses the common padding kernel's thread configuration. This is allowed, since the
- // symmetric-to-squared kernel uses the same parameters.
- auto global = std::vector<size_t>{Ceil(CeilDiv(n, db_["PAD_WPTX"]), db_["PAD_DIMX"]),
- Ceil(CeilDiv(n, db_["PAD_WPTY"]), db_["PAD_DIMY"])};
- auto local = std::vector<size_t>{db_["PAD_DIMX"], db_["PAD_DIMY"]};
- status = RunKernel(kernel, global, local);
- if (ErrorIn(status)) { return status; }
-
- // Runs the regular Xgemv code
- status = DoGemv(layout, Transpose::kNo, n, n, alpha,
- temp_symm, 0, n,
- x_buffer, x_offset, x_inc, beta,
- y_buffer, y_offset, y_inc);
- // Return the status of the Xgemv routine
- return status;
- } catch (...) { return StatusCode::kInvalidKernel; }
- } catch (...) { return StatusCode::kTempBufferAllocFailure; }
+ // Runs the generic matrix-vector multiplication, disabling the use of fast vectorized kernels.
+ // The specific symmetric matrix-accesses are implemented in the kernel guarded by the
+ // ROUTINE_SYMV define.
+ bool fast_kernels = false;
+ return MatVec(layout, Transpose::kNo,
+ n, n, alpha,
+ a_buffer, a_offset, a_ld,
+ x_buffer, x_offset, x_inc, beta,
+ y_buffer, y_offset, y_inc,
+ fast_kernels, fast_kernels,
+ reversed, 0, 0);
}
// =================================================================================================