summaryrefslogtreecommitdiff
path: root/src/routines
diff options
context:
space:
mode:
authorCNugteren <web@cedricnugteren.nl>2015-07-10 07:19:59 +0200
committerCNugteren <web@cedricnugteren.nl>2015-07-10 07:19:59 +0200
commit919bba3eaf0feaa83e787aa500d6f0d5169b02b5 (patch)
tree207f61a5336a207306c523c031d8bc302c02bca1 /src/routines
parent2fe3fe15801f8ef11b38bfd93d7d68fbb37253a1 (diff)
Added the HERK routine, tester, and client
Diffstat (limited to 'src/routines')
-rw-r--r--src/routines/xherk.cc156
1 files changed, 156 insertions, 0 deletions
diff --git a/src/routines/xherk.cc b/src/routines/xherk.cc
new file mode 100644
index 00000000..6bc9cd6c
--- /dev/null
+++ b/src/routines/xherk.cc
@@ -0,0 +1,156 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This file implements the Xherk class (see the header for information about the class).
+//
+// =================================================================================================
+
+#include "internal/routines/xherk.h"
+
+#include <string>
+#include <vector>
+
+namespace clblast {
+// =================================================================================================
+
+// Specific implementations to get the memory-type based on a template argument
+template <> const Precision Xherk<float2,float>::precision_ = Precision::kComplexSingle;
+template <> const Precision Xherk<double2,double>::precision_ = Precision::kComplexDouble;
+
+// =================================================================================================
+
+// Constructor: forwards to base class constructor
+template <typename T, typename U>
+Xherk<T,U>::Xherk(CommandQueue &queue, Event &event):
+ Routine(queue, event, {"Copy", "Pad", "Transpose", "PadTranspose", "Xgemm"}, precision_) {
+}
+
+// =================================================================================================
+
+// The main routine
+template <typename T, typename U>
+StatusCode Xherk<T,U>::DoHerk(const Layout layout, const Triangle triangle, const Transpose a_transpose,
+ const size_t n, const size_t k,
+ const U alpha,
+ const Buffer &a_buffer, const size_t a_offset, const size_t a_ld,
+ const U beta,
+ const Buffer &c_buffer, const size_t c_offset, const size_t c_ld) {
+
+ // Makes sure all dimensions are larger than zero
+ if ((n == 0) || (k == 0) ) { return StatusCode::kInvalidDimension; }
+
+ // Determines whether to apply the conjugate transpose to matrix B (argument: no transpose) or
+ // to matrix A (argument: conjugate transpose)
+ auto a_conjugate = (a_transpose != Transpose::kNo);
+ auto b_conjugate = (a_transpose == Transpose::kNo);
+
+ // Computes whether or not the matrices are transposed in memory. This is based on their layout
+ // (row or column-major) and whether or not they are requested to be pre-transposed.
+ auto a_rotated = (layout == Layout::kColMajor && a_conjugate) ||
+ (layout == Layout::kRowMajor && !a_conjugate);
+ auto c_rotated = (layout == Layout::kRowMajor);
+
+ // Computes the first and second dimensions of the A matrix taking the layout into account
+ auto a_one = (a_rotated) ? k : n;
+ auto a_two = (a_rotated) ? n : k;
+
+ // Tests the two matrices (A, C) for validity, first from a perspective of the OpenCL buffers and
+ // their sizes, and then from a perspective of parameter values (e.g. n, k). Tests whether the
+ // OpenCL buffers are valid and non-zero and whether the OpenCL buffers have sufficient storage
+ // space. Also tests that the leading dimensions of:
+ // matrix A cannot be less than N when rotated, or less than K when not-rotated
+ // matrix C cannot be less than N
+ auto status = TestMatrixA(a_one, a_two, a_buffer, a_offset, a_ld, sizeof(T));
+ if (ErrorIn(status)) { return status; }
+ status = TestMatrixC(n, n, c_buffer, c_offset, c_ld, sizeof(T));
+ if (ErrorIn(status)) { return status; }
+
+ // Calculates the ceiled versions of n and k
+ auto n_ceiled = Ceil(n, db_["NWG"]);
+ auto k_ceiled = Ceil(k, db_["KWG"]);
+
+ // Decides which kernel to run: the upper-triangular or lower-triangular version
+ auto kernel_name = (triangle == Triangle::kUpper) ? "XgemmUpper" : "XgemmLower";
+
+ // Allocates space on the device for padded and/or transposed input and output matrices.
+ try {
+ auto temp_a = Buffer(context_, CL_MEM_READ_WRITE, k_ceiled*n_ceiled*sizeof(T));
+ auto temp_b = Buffer(context_, CL_MEM_READ_WRITE, k_ceiled*n_ceiled*sizeof(T));
+ auto temp_c = Buffer(context_, CL_MEM_READ_WRITE, n_ceiled*n_ceiled*sizeof(T));
+
+ // Loads the program from the database
+ auto& program = GetProgramFromCache();
+
+ // Runs the pre-processing kernel. This transposes the matrix A, but also pads zeros to
+ // fill it up until it reaches a certain multiple of size (kernel parameter dependent). It
+ // creates two copies:
+ status = PadCopyTransposeMatrix(a_one, a_two, a_ld, a_offset, a_buffer,
+ n_ceiled, k_ceiled, n_ceiled, 0, temp_a,
+ a_rotated, a_conjugate, true, false, false, false, program);
+ if (ErrorIn(status)) { return status; }
+ status = PadCopyTransposeMatrix(a_one, a_two, a_ld, a_offset, a_buffer,
+ n_ceiled, k_ceiled, n_ceiled, 0, temp_b,
+ a_rotated, b_conjugate, true, false, false, false, program);
+ if (ErrorIn(status)) { return status; }
+
+ // Furthermore, also creates a (possibly padded) copy of matrix C, since it is not allowed to
+ // modify the other triangle.
+ status = PadCopyTransposeMatrix(n, n, c_ld, c_offset, c_buffer,
+ n_ceiled, n_ceiled, n_ceiled, 0, temp_c,
+ c_rotated, false, true, false, false, false, program);
+ if (ErrorIn(status)) { return status; }
+
+ // Retrieves the XgemmUpper or XgemmLower kernel from the compiled binary
+ try {
+ auto kernel = Kernel(program, kernel_name);
+
+ // Sets the kernel arguments
+ auto complex_alpha = T{alpha, static_cast<U>(0.0)};
+ auto complex_beta = T{beta, static_cast<U>(0.0)};
+ kernel.SetArgument(0, static_cast<int>(n_ceiled));
+ kernel.SetArgument(1, static_cast<int>(k_ceiled));
+ kernel.SetArgument(2, complex_alpha);
+ kernel.SetArgument(3, complex_beta);
+ kernel.SetArgument(4, temp_a());
+ kernel.SetArgument(5, temp_b());
+ kernel.SetArgument(6, temp_c());
+
+ // Computes the global and local thread sizes
+ auto global = std::vector<size_t>{
+ (n_ceiled * db_["MDIMC"]) / db_["MWG"],
+ (n_ceiled * db_["NDIMC"]) / db_["NWG"]
+ };
+ auto local = std::vector<size_t>{db_["MDIMC"], db_["NDIMC"]};
+
+ // Launches the kernel
+ status = RunKernel(kernel, global, local);
+ if (ErrorIn(status)) { return status; }
+
+ // Runs the post-processing kernel
+ auto upper = (triangle == Triangle::kUpper);
+ auto lower = (triangle == Triangle::kLower);
+ status = PadCopyTransposeMatrix(n_ceiled, n_ceiled, n_ceiled, 0, temp_c,
+ n, n, c_ld, c_offset, c_buffer,
+ c_rotated, false, false, upper, lower, true, program);
+ if (ErrorIn(status)) { return status; }
+
+ // Successfully finished the computation
+ return StatusCode::kSuccess;
+ } catch (...) { return StatusCode::kInvalidKernel; }
+ } catch (...) { return StatusCode::kTempBufferAllocFailure; }
+}
+
+// =================================================================================================
+
+// Compiles the templated class
+template class Xherk<float2,float>;
+template class Xherk<double2,double>;
+
+// =================================================================================================
+} // namespace clblast