summaryrefslogtreecommitdiff
path: root/test/routines/levelx
diff options
context:
space:
mode:
authorCedric Nugteren <web@cedricnugteren.nl>2017-04-01 13:36:24 +0200
committerCedric Nugteren <web@cedricnugteren.nl>2017-04-01 13:36:24 +0200
commitb84d2296b87ac212474af855d916b12adf96bdb7 (patch)
tree0f2e85e1e1acef1d22f046499dd0b8a30e5da4f9 /test/routines/levelx
parenta98c00a2671b8981579f3a73dca8fb3365a95e53 (diff)
Separated host-device and device-host memory copies from execution of the CBLAS reference code; for fair timing and code de-duplication
Diffstat (limited to 'test/routines/levelx')
-rw-r--r--test/routines/levelx/xaxpybatched.hpp13
-rw-r--r--test/routines/levelx/xgemmbatched.hpp17
-rw-r--r--test/routines/levelx/xinvert.hpp56
-rw-r--r--test/routines/levelx/xomatcopy.hpp43
4 files changed, 57 insertions, 72 deletions
diff --git a/test/routines/levelx/xaxpybatched.hpp b/test/routines/levelx/xaxpybatched.hpp
index ee15ff92..05141bbb 100644
--- a/test/routines/levelx/xaxpybatched.hpp
+++ b/test/routines/levelx/xaxpybatched.hpp
@@ -45,6 +45,8 @@ class TestXaxpyBatched {
kArgXInc, kArgYInc,
kArgBatchCount, kArgAlpha};
}
+ static std::vector<std::string> BuffersIn() { return {kBufVecX, kBufVecY}; }
+ static std::vector<std::string> BuffersOut() { return {kBufVecY}; }
// Helper for the sizes per batch
static size_t PerBatchSizeX(const Arguments<T> &args) { return args.n * args.x_inc; }
@@ -123,17 +125,12 @@ class TestXaxpyBatched {
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
- static StatusCode RunReference2(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
- std::vector<T> x_vec_cpu(args.x_size, static_cast<T>(0));
- std::vector<T> y_vec_cpu(args.y_size, static_cast<T>(0));
- buffers.x_vec.Read(queue, args.x_size, x_vec_cpu);
- buffers.y_vec.Read(queue, args.y_size, y_vec_cpu);
+ static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue &) {
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
cblasXaxpy(args.n, args.alphas[batch],
- x_vec_cpu, args.x_offsets[batch], args.x_inc,
- y_vec_cpu, args.y_offsets[batch], args.y_inc);
+ buffers_host.x_vec, args.x_offsets[batch], args.x_inc,
+ buffers_host.y_vec, args.y_offsets[batch], args.y_inc);
}
- buffers.y_vec.Write(queue, args.y_size, y_vec_cpu);
return StatusCode::kSuccess;
}
#endif
diff --git a/test/routines/levelx/xgemmbatched.hpp b/test/routines/levelx/xgemmbatched.hpp
index 80a30e4d..ab5f20c5 100644
--- a/test/routines/levelx/xgemmbatched.hpp
+++ b/test/routines/levelx/xgemmbatched.hpp
@@ -45,6 +45,8 @@ class TestXgemmBatched {
kArgAOffset, kArgBOffset, kArgCOffset,
kArgBatchCount, kArgAlpha, kArgBeta};
}
+ static std::vector<std::string> BuffersIn() { return {kBufMatA, kBufMatB, kBufMatC}; }
+ static std::vector<std::string> BuffersOut() { return {kBufMatC}; }
// Helper for the sizes per batch
static size_t PerBatchSizeA(const Arguments<T> &args) {
@@ -152,23 +154,16 @@ class TestXgemmBatched {
// Describes how to run the CPU BLAS routine (for correctness/performance comparison)
#ifdef CLBLAST_REF_CBLAS
- static StatusCode RunReference2(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
- std::vector<T> a_mat_cpu(args.a_size, static_cast<T>(0));
- std::vector<T> b_mat_cpu(args.b_size, static_cast<T>(0));
- std::vector<T> c_mat_cpu(args.c_size, static_cast<T>(0));
- buffers.a_mat.Read(queue, args.a_size, a_mat_cpu);
- buffers.b_mat.Read(queue, args.b_size, b_mat_cpu);
- buffers.c_mat.Read(queue, args.c_size, c_mat_cpu);
+ static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue &) {
for (auto batch = size_t{0}; batch < args.batch_count; ++batch) {
cblasXgemm(convertToCBLAS(args.layout),
convertToCBLAS(args.a_transpose),
convertToCBLAS(args.b_transpose),
args.m, args.n, args.k, args.alphas[batch],
- a_mat_cpu, args.a_offsets[batch], args.a_ld,
- b_mat_cpu, args.b_offsets[batch], args.b_ld, args.betas[batch],
- c_mat_cpu, args.c_offsets[batch], args.c_ld);
+ buffers_host.a_mat, args.a_offsets[batch], args.a_ld,
+ buffers_host.b_mat, args.b_offsets[batch], args.b_ld, args.betas[batch],
+ buffers_host.c_mat, args.c_offsets[batch], args.c_ld);
}
- buffers.c_mat.Write(queue, args.c_size, c_mat_cpu);
return StatusCode::kSuccess;
}
#endif
diff --git a/test/routines/levelx/xinvert.hpp b/test/routines/levelx/xinvert.hpp
index b470dbf3..ffb484b0 100644
--- a/test/routines/levelx/xinvert.hpp
+++ b/test/routines/levelx/xinvert.hpp
@@ -25,17 +25,10 @@ namespace clblast {
// =================================================================================================
template <typename T>
-StatusCode RunReference(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
+StatusCode RunReference(const Arguments<T> &args, BuffersHost<T> &buffers_host) {
const bool is_upper = ((args.triangle == Triangle::kUpper && args.layout != Layout::kRowMajor) ||
(args.triangle == Triangle::kLower && args.layout == Layout::kRowMajor));
- // Data transfer from OpenCL to std::vector
- std::vector<T> a_mat_cpu(args.a_size, T{0.0});
- buffers.a_mat.Read(queue, args.a_size, a_mat_cpu);
-
- // Creates the output buffer
- std::vector<T> b_mat_cpu(args.b_size, T{0.0});
-
// Helper variables
const auto block_size = args.m;
const auto num_blocks = CeilDiv(args.n, block_size);
@@ -60,11 +53,11 @@ StatusCode RunReference(const Arguments<T> &args, Buffers<T> &buffers, Queue &qu
auto a_value = T{1.0};
if (args.diagonal == Diagonal::kNonUnit) {
if (i + block_id * block_size < args.n) {
- if (a_mat_cpu[i * a_ld + i + a_offset] == T{0.0}) { return StatusCode::kUnknownError; }
- a_value = T{1.0} / a_mat_cpu[i * a_ld + i + a_offset];
+ if (buffers_host.a_mat[i * a_ld + i + a_offset] == T{0.0}) { return StatusCode::kUnknownError; }
+ a_value = T{1.0} / buffers_host.a_mat[i * a_ld + i + a_offset];
}
}
- b_mat_cpu[i * b_ld + i + b_offset] = a_value;
+ buffers_host.b_mat[i * b_ld + i + b_offset] = a_value;
}
// Inverts the upper triangle row by row
@@ -75,11 +68,11 @@ StatusCode RunReference(const Arguments<T> &args, Buffers<T> &buffers, Queue &qu
for (auto k = i + 1; k <= j; ++k) {
auto a_value = T{0.0};
if ((i + block_id * block_size < args.n) && (k + block_id * block_size < args.n)) {
- a_value = a_mat_cpu[k * a_ld + i + a_offset];
+ a_value = buffers_host.a_mat[k * a_ld + i + a_offset];
}
- sum += a_value * b_mat_cpu[j * b_ld + k + b_offset];
+ sum += a_value * buffers_host.b_mat[j * b_ld + k + b_offset];
}
- b_mat_cpu[j * b_ld + i + b_offset] = - sum * b_mat_cpu[i * b_ld + i + b_offset];
+ buffers_host.b_mat[j * b_ld + i + b_offset] = - sum * buffers_host.b_mat[i * b_ld + i + b_offset];
}
}
}
@@ -92,35 +85,32 @@ StatusCode RunReference(const Arguments<T> &args, Buffers<T> &buffers, Queue &qu
for (auto k = j; k < i; ++k) {
auto a_value = T{0.0};
if ((i + block_id * block_size < args.n) && (k + block_id * block_size < args.n)) {
- a_value = a_mat_cpu[k * a_ld + i + a_offset];
+ a_value = buffers_host.a_mat[k * a_ld + i + a_offset];
}
- sum += a_value * b_mat_cpu[j * b_ld + k + b_offset];
+ sum += a_value * buffers_host.b_mat[j * b_ld + k + b_offset];
}
- b_mat_cpu[j * b_ld + i + b_offset] = - sum * b_mat_cpu[i * b_ld + i + b_offset];
+ buffers_host.b_mat[j * b_ld + i + b_offset] = - sum * buffers_host.b_mat[i * b_ld + i + b_offset];
}
}
}
}
-
- // Data transfer back to OpenCL
- buffers.b_mat.Write(queue, args.b_size, b_mat_cpu);
return StatusCode::kSuccess;
}
// Half-precision version calling the above reference implementation after conversions
template <>
-StatusCode RunReference<half>(const Arguments<half> &args, Buffers<half> &buffers, Queue &queue) {
- auto a_buffer2 = HalfToFloatBuffer(buffers.a_mat, queue());
- auto b_buffer2 = HalfToFloatBuffer(buffers.b_mat, queue());
- auto dummy = clblast::Buffer<float>(0);
- auto buffers2 = Buffers<float>{dummy, dummy, a_buffer2, b_buffer2, dummy, dummy, dummy};
+StatusCode RunReference<half>(const Arguments<half> &args, BuffersHost<half> &buffers_host) {
+ auto a_buffer2 = HalfToFloatBuffer(buffers_host.a_mat);
+ auto b_buffer2 = HalfToFloatBuffer(buffers_host.b_mat);
+ auto dummy = std::vector<float>(0);
+ auto buffers2 = BuffersHost<float>{dummy, dummy, a_buffer2, b_buffer2, dummy, dummy, dummy};
auto args2 = Arguments<float>();
args2.a_size = args.a_size; args2.b_size = args.b_size;
args2.a_ld = args.a_ld; args2.m = args.m; args2.n = args.n;
args2.a_offset = args.a_offset;
args2.layout = args.layout; args2.triangle = args.triangle; args2.diagonal = args.diagonal;
- auto status = RunReference(args2, buffers2, queue);
- FloatToHalfBuffer(buffers.b_mat, b_buffer2, queue());
+ auto status = RunReference(args2, buffers2);
+ FloatToHalfBuffer(buffers_host.b_mat, b_buffer2);
return status;
}
@@ -140,6 +130,8 @@ class TestXinvert {
kArgLayout, kArgTriangle, kArgDiagonal,
kArgALeadDim, kArgAOffset};
}
+ static std::vector<std::string> BuffersIn() { return {kBufMatA, kBufMatB}; }
+ static std::vector<std::string> BuffersOut() { return {kBufMatB}; }
// Describes how to obtain the sizes of the buffers
static size_t GetSizeA(const Arguments<T> &args) {
@@ -190,11 +182,15 @@ class TestXinvert {
// Describes how to run a naive version of the routine (for correctness/performance comparison).
// Note that a proper clBLAS or CPU BLAS comparison is not available for non-BLAS routines.
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
- return RunReference(args, buffers, queue);
+ auto buffers_host = BuffersHost<T>();
+ DeviceToHost(args, buffers, buffers_host, queue, BuffersIn());
+ const auto status = RunReference(args, buffers_host);
+ HostToDevice(args, buffers, buffers_host, queue, BuffersOut());
+ return status;
}
- static StatusCode RunReference2(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
- return RunReference(args, buffers, queue);
+ static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue&) {
+ return RunReference(args, buffers_host);
}
// Describes how to download the results of the computation (more importantly: which buffer)
diff --git a/test/routines/levelx/xomatcopy.hpp b/test/routines/levelx/xomatcopy.hpp
index d1064d0c..d5973b4c 100644
--- a/test/routines/levelx/xomatcopy.hpp
+++ b/test/routines/levelx/xomatcopy.hpp
@@ -23,13 +23,7 @@ namespace clblast {
// =================================================================================================
template <typename T>
-StatusCode RunReference(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
-
- // Data transfer from OpenCL to std::vector
- std::vector<T> a_mat_cpu(args.a_size, static_cast<T>(0));
- std::vector<T> b_mat_cpu(args.b_size, static_cast<T>(0));
- buffers.a_mat.Read(queue, args.a_size, a_mat_cpu);
- buffers.b_mat.Read(queue, args.b_size, b_mat_cpu);
+StatusCode RunReference(const Arguments<T> &args, BuffersHost<T> &buffers_host) {
// Checking for invalid arguments
const auto a_rotated = (args.layout == Layout::kRowMajor);
@@ -40,8 +34,8 @@ StatusCode RunReference(const Arguments<T> &args, Buffers<T> &buffers, Queue &qu
if ((args.m == 0) || (args.n == 0)) { return StatusCode::kInvalidDimension; }
if ((args.a_ld < args.m && !a_rotated) || (args.a_ld < args.n && a_rotated)) { return StatusCode::kInvalidLeadDimA; }
if ((args.b_ld < args.m && !b_rotated) || (args.b_ld < args.n && b_rotated)) { return StatusCode::kInvalidLeadDimB; }
- if (buffers.a_mat.GetSize() < (a_base + args.a_offset) * sizeof(T)) { return StatusCode::kInsufficientMemoryA; }
- if (buffers.b_mat.GetSize() < (b_base + args.b_offset) * sizeof(T)) { return StatusCode::kInsufficientMemoryB; }
+ if (buffers_host.a_mat.size() * sizeof(T) < (a_base + args.a_offset) * sizeof(T)) { return StatusCode::kInsufficientMemoryA; }
+ if (buffers_host.b_mat.size() * sizeof(T) < (b_base + args.b_offset) * sizeof(T)) { return StatusCode::kInsufficientMemoryB; }
// Matrix copy, scaling, and/or transpose
for (auto id1 = size_t{0}; id1 < args.m; ++id1) {
@@ -52,30 +46,27 @@ StatusCode RunReference(const Arguments<T> &args, Buffers<T> &buffers, Queue &qu
const auto b_two = (b_rotated) ? id1 : id2;
const auto a_index = a_two * args.a_ld + a_one + args.a_offset;
const auto b_index = b_two * args.b_ld + b_one + args.b_offset;
- b_mat_cpu[b_index] = args.alpha * a_mat_cpu[a_index];
+ buffers_host.b_mat[b_index] = args.alpha * buffers_host.a_mat[a_index];
}
}
-
- // Data transfer back to OpenCL
- buffers.b_mat.Write(queue, args.b_size, b_mat_cpu);
return StatusCode::kSuccess;
}
// Half-precision version calling the above reference implementation after conversions
template <>
-StatusCode RunReference<half>(const Arguments<half> &args, Buffers<half> &buffers, Queue &queue) {
- auto a_buffer2 = HalfToFloatBuffer(buffers.a_mat, queue());
- auto b_buffer2 = HalfToFloatBuffer(buffers.b_mat, queue());
- auto dummy = clblast::Buffer<float>(0);
- auto buffers2 = Buffers<float>{dummy, dummy, a_buffer2, b_buffer2, dummy, dummy, dummy};
+StatusCode RunReference<half>(const Arguments<half> &args, BuffersHost<half> &buffers_host) {
+ auto a_buffer2 = HalfToFloatBuffer(buffers_host.a_mat);
+ auto b_buffer2 = HalfToFloatBuffer(buffers_host.b_mat);
+ auto dummy = std::vector<float>(0);
+ auto buffers2 = BuffersHost<float>{dummy, dummy, a_buffer2, b_buffer2, dummy, dummy, dummy};
auto args2 = Arguments<float>();
args2.a_size = args.a_size; args2.b_size = args.b_size;
args2.a_ld = args.a_ld; args2.b_ld = args.b_ld; args2.m = args.m; args2.n = args.n;
args2.a_offset = args.a_offset; args2.b_offset = args.b_offset;
args2.layout = args.layout; args2.a_transpose = args.a_transpose;
args2.alpha = HalfToFloat(args.alpha);
- auto status = RunReference(args2, buffers2, queue);
- FloatToHalfBuffer(buffers.b_mat, b_buffer2, queue());
+ auto status = RunReference(args2, buffers2);
+ FloatToHalfBuffer(buffers_host.b_mat, b_buffer2);
return status;
}
@@ -97,6 +88,8 @@ class TestXomatcopy {
kArgAOffset, kArgBOffset,
kArgAlpha};
}
+ static std::vector<std::string> BuffersIn() { return {kBufMatA, kBufMatB}; }
+ static std::vector<std::string> BuffersOut() { return {kBufMatB}; }
// Describes how to obtain the sizes of the buffers
static size_t GetSizeA(const Arguments<T> &args) {
@@ -148,11 +141,15 @@ class TestXomatcopy {
// Describes how to run a naive version of the routine (for correctness/performance comparison).
// Note that a proper clBLAS or CPU BLAS comparison is not available for non-BLAS routines.
static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
- return RunReference(args, buffers, queue);
+ auto buffers_host = BuffersHost<T>();
+ DeviceToHost(args, buffers, buffers_host, queue, BuffersIn());
+ const auto status = RunReference(args, buffers_host);
+ HostToDevice(args, buffers, buffers_host, queue, BuffersOut());
+ return status;
}
- static StatusCode RunReference2(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
- return RunReference(args, buffers, queue);
+ static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue&) {
+ return RunReference(args, buffers_host);
}
// Describes how to download the results of the computation (more importantly: which buffer)