summaryrefslogtreecommitdiff
path: root/src/kernels/level3/xgemm.opencl
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernels/level3/xgemm.opencl')
-rw-r--r--src/kernels/level3/xgemm.opencl683
1 files changed, 683 insertions, 0 deletions
diff --git a/src/kernels/level3/xgemm.opencl b/src/kernels/level3/xgemm.opencl
new file mode 100644
index 00000000..8db0f557
--- /dev/null
+++ b/src/kernels/level3/xgemm.opencl
@@ -0,0 +1,683 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This file contains an optimized matrix-multiplication kernel according to the paper by Matsumoto
+// et al. and the tutorial on http://www.cedricnugteren.nl/tutorial.php. It is fully configurable
+// (and tunable!) using more or less the same parameters/naming conventions as in the paper. It
+// supports single and double precision (SGEMM/DGEMM) through a pre-processor define.
+//
+// Matrices are accessed as follows:
+// A: [k*M + m], with 'k' ranging from 0:K and 'm' from 0:M (m,k,m)
+// B: [k*N + n], with 'k' ranging from 0:K and 'n' from 0:N (n,k,n)
+// C: [n*M + m], with 'n' ranging from 0:N and 'm' from 0:M (m,n,m)
+//
+// Or as an image (assuming column-major)
+// K
+// o-------o
+// | |
+// N | [B^T] |
+// | |
+// o-------o
+// K N
+// o-------o o-----o
+// M | [A] | M | [C] |
+// | | | |
+// o-------o o-----o
+//
+//
+// =================================================================================================
+
+// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
+// literal). Comment-out this line for syntax-highlighting when developing.
+R"(
+
+// =================================================================================================
+
+// Parameters set by the tuner or by the database. Here they are given a basic default value in case
+// this kernel file is used outside of the CLBlast library.
+#ifndef MWG
+ #define MWG 8 // Tile-size in dimension M (e.g. 64, 128)
+#endif
+#ifndef NWG
+ #define NWG 8 // Tile-size in dimension N (e.g. 64, 128)
+#endif
+#ifndef KWG
+ #define KWG 8 // Tile-size in dimension K (e.g. 8, 16)
+#endif
+#ifndef MDIMC
+ #define MDIMC 8 // Threads per workgroup in M-dimension (e.g. 8, 16, 32)
+#endif
+#ifndef NDIMC
+ #define NDIMC 8 // Threads per workgroup in N-dimension (e.g. 8, 16, 32)
+#endif
+#ifndef MDIMA
+ #define MDIMA 8 // Re-shaped tile dimension of matrix A: KDIMA * MDIMA
+#endif
+#ifndef NDIMB
+ #define NDIMB 8 // Re-shaped tile dimension of matrix B: KDIMB * NDIMB
+#endif
+#ifndef KWI
+ #define KWI 1 // Unroll factor of the KWG loop (smaller or equal than KWG)
+#endif
+#ifndef VWM
+ #define VWM 1 // Vector width of matrices A and C
+#endif
+#ifndef VWN
+ #define VWN 1 // Vector width of matrix B
+#endif
+#ifndef STRM
+ #define STRM 0 // Use strided access within a thread in the M-dimension (1) or not (0)
+#endif
+#ifndef STRN
+ #define STRN 0 // Use strided access within a thread in the N-dimension (1) or not (0)
+#endif
+#ifndef SA
+ #define SA 0 // Use local/shared memory to cache matrix A (1) or not (0)
+#endif
+#ifndef SB
+ #define SB 0 // Use local/shared memory to cache matrix B (1) or not (0)
+#endif
+
+// Helper parameters based on the above tuning parameters
+#define MWI (MWG/MDIMC) // Work per work-item (M-dimension)
+#define NWI (NWG/NDIMC) // Work per work-item (N-dimension)
+#define KDIMA ((MDIMC*NDIMC)/(MDIMA)) // Re-shaped tile dimension of matrix A: KDIMA * MDIMA
+#define KDIMB ((MDIMC*NDIMC)/(NDIMB)) // Re-shaped tile dimension of matrix B: KDIMB * NDIMB
+#define MWA (MWG/MDIMA) // Amount of loads-per-thread for matrix A (M-dimension)
+#define KWA (KWG/KDIMA) // Amount of loads-per-thread for matrix A (K-dimension)
+#define KWB (KWG/KDIMB) // Amount of loads-per-thread for matrix B (K-dimension)
+#define NWB (NWG/NDIMB) // Amount of loads-per-thread for matrix B (N-dimension)
+
+// Settings
+#define USE_VECTOR_MAD 0 // Unroll (0) or don't (1) unroll the vector MAD manually
+
+// =================================================================================================
+
+// Data-widths in dimension M
+#if VWM == 1
+ typedef real realM;
+#elif VWM == 2
+ typedef real2 realM;
+#elif VWM == 4
+ typedef real4 realM;
+#elif VWM == 8
+ typedef real8 realM;
+#elif VWM == 16
+ typedef real16 realM;
+#endif
+
+// Data-widths in dimension N
+#if VWN == 1
+ typedef real realN;
+#elif VWN == 2
+ typedef real2 realN;
+#elif VWN == 4
+ typedef real4 realN;
+#elif VWN == 8
+ typedef real8 realN;
+#elif VWN == 16
+ typedef real16 realN;
+#endif
+
+// =================================================================================================
+
+// Initializes the accumulation registers to zero
+inline void InitAccRegisters(realM cpm[NWI][MWI/VWM]) {
+ #pragma unroll
+ for (int mi=0; mi<MWI/VWM; ++mi) {
+ #pragma unroll
+ for (int ni=0; ni<NWI; ++ni) {
+ #if VWM == 1
+ SetToZero(cpm[ni][mi]);
+ #elif VWM == 2
+ SetToZero(cpm[ni][mi].x);
+ SetToZero(cpm[ni][mi].y);
+ #elif VWM == 4
+ SetToZero(cpm[ni][mi].x);
+ SetToZero(cpm[ni][mi].y);
+ SetToZero(cpm[ni][mi].z);
+ SetToZero(cpm[ni][mi].w);
+ #elif VWM == 8
+ SetToZero(cpm[ni][mi].s0);
+ SetToZero(cpm[ni][mi].s1);
+ SetToZero(cpm[ni][mi].s2);
+ SetToZero(cpm[ni][mi].s3);
+ SetToZero(cpm[ni][mi].s4);
+ SetToZero(cpm[ni][mi].s5);
+ SetToZero(cpm[ni][mi].s6);
+ SetToZero(cpm[ni][mi].s7);
+ #elif VWM == 16
+ SetToZero(cpm[ni][mi].s0);
+ SetToZero(cpm[ni][mi].s1);
+ SetToZero(cpm[ni][mi].s2);
+ SetToZero(cpm[ni][mi].s3);
+ SetToZero(cpm[ni][mi].s4);
+ SetToZero(cpm[ni][mi].s5);
+ SetToZero(cpm[ni][mi].s6);
+ SetToZero(cpm[ni][mi].s7);
+ SetToZero(cpm[ni][mi].s8);
+ SetToZero(cpm[ni][mi].s9);
+ SetToZero(cpm[ni][mi].sA);
+ SetToZero(cpm[ni][mi].sB);
+ SetToZero(cpm[ni][mi].sC);
+ SetToZero(cpm[ni][mi].sD);
+ SetToZero(cpm[ni][mi].sE);
+ SetToZero(cpm[ni][mi].sF);
+ #endif
+ }
+ }
+}
+
+// =================================================================================================
+
+// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
+// caching the A input matrix.
+#if SA == 1
+inline void GlobalToLocalA(const __global realM* restrict agm, __local realM* alm,
+ const int kSizeM, const int tid, const int kwg) {
+ const int la0 = tid % MDIMA;
+ const int la1 = tid / MDIMA;
+ #pragma unroll
+ for (int mia=0; mia<MWA/VWM; ++mia) {
+ #pragma unroll
+ for (int kia=0; kia<KWA; ++kia) {
+
+ // Computes the indices based on strided/non-strided access
+ #if STRM == 0
+ int mg = mia + la0*(MWA/VWM);
+ #elif STRM == 1
+ int mg = la0 + mia*MDIMA;
+ #endif
+
+ // Computes the indices for the global memory
+ int kg = kia + la1*KWA;
+ int idm = mg + get_group_id(0)*(MWG/VWM);
+ int idk = kg + kwg;
+
+ // Loads the data from global memory (not transposed) into the local memory
+ alm[kg*(MWG/VWM) + mg] = agm[idk*(kSizeM/VWM) + idm];
+ }
+ }
+}
+#endif
+
+// Same as above, but now for the B input matrix
+#if SB == 1
+inline void GlobalToLocalB(const __global realN* restrict bgm, __local realN* blm,
+ const int kSizeN, const int tid, const int kwg) {
+ const int lb0 = tid % NDIMB;
+ const int lb1 = tid / NDIMB;
+ #pragma unroll
+ for (int kib=0; kib<KWB; ++kib) {
+ #pragma unroll
+ for (int nib=0; nib<NWB/VWN; ++nib) {
+
+ // Computes the indices based on strided/non-strided access
+ #if STRN == 0
+ int ng = nib + lb0*(NWB/VWN);
+ #elif STRN == 1
+ int ng = lb0 + nib*NDIMB;
+ #endif
+
+ // Computes the indices for the global memory
+ int kg = kib + lb1*KWB;
+ int idn = ng + get_group_id(1)*(NWG/VWN);
+ int idk = kg + kwg;
+
+ // Loads the data from global memory (transposed) into the local memory
+ blm[kg*(NWG/VWN) + ng] = bgm[idk*(kSizeN/VWN) + idn];
+ }
+ }
+}
+#endif
+
+// =================================================================================================
+
+// Caches global off-chip memory directly into per-thread private memory (registers). This function
+// is specific for caching the A input matrix.
+#if SA == 0
+inline void GlobalToPrivateA(const __global realM* restrict agm, realM apm[MWI/VWM],
+ const int kSizeM, const int idk, const int kwg) {
+ #pragma unroll
+ for (int mi=0; mi<MWI/VWM; ++mi) {
+
+ // Computes the indices based on strided/non-strided access
+ #if STRM == 0
+ int mg = mi + get_local_id(0)*(MWI/VWM);
+ #elif STRM == 1
+ int mg = get_local_id(0) + mi*MDIMC;
+ #endif
+
+ // Computes the indices for the global memory
+ int idm = mg + get_group_id(0)*(MWG/VWM);
+
+ // Loads the data from global memory (not transposed) and stores into registers
+ apm[mi] = agm[idk*(kSizeM/VWM) + idm];
+ }
+}
+#endif
+
+// Same as above, but now for the B input matrix
+#if SB == 0
+inline void GlobalToPrivateB(const __global realN* restrict bgm, realN bpm[NWI/VWN],
+ const int kSizeN, const int idk) {
+ #pragma unroll
+ for (int ni=0; ni<NWI/VWN; ++ni) {
+
+ // Computes the indices based on strided/non-strided access
+ #if STRN == 0
+ int ng = ni + get_local_id(1)*(NWI/VWN);
+ #elif STRN == 1
+ int ng = get_local_id(1) + ni*NDIMC;
+ #endif
+
+ // Computes the indices for the global memory
+ int idn = ng + get_group_id(1)*(NWG/VWN);
+
+ // Loads the data from global memory (transposed) and stores into registers
+ bpm[ni] = bgm[idk*(kSizeN/VWN) + idn];
+ }
+}
+#endif
+
+// =================================================================================================
+
+// Caches on-chip local memory into per-thread private memory (registers). This function is specific
+// for caching the A input matrix.
+#if SA == 1
+inline void LocalToPrivateA(__local realM* alm, realM apm[MWI/VWM], const int kg) {
+ #pragma unroll
+ for (int mi=0; mi<MWI/VWM; ++mi) {
+ #if STRM == 0
+ int mg = mi + get_local_id(0)*(MWI/VWM);
+ #elif STRM == 1
+ int mg = get_local_id(0) + mi*MDIMC;
+ #endif
+ apm[mi] = alm[kg*(MWG/VWM) + mg];
+ }
+}
+#endif
+
+// Same as above, but now for the B input matrix
+#if SB == 1
+inline void LocalToPrivateB(__local realN* blm, realN bpm[NWI/VWN], const int kg) {
+ #pragma unroll
+ for (int ni=0; ni<NWI/VWN; ++ni) {
+ #if STRN == 0
+ int ng = ni + get_local_id(1)*(NWI/VWN);
+ #elif STRN == 1
+ int ng = get_local_id(1) + ni*NDIMC;
+ #endif
+ bpm[ni] = blm[kg*(NWG/VWN) + ng];
+ }
+}
+#endif
+
+// =================================================================================================
+
+// The vectorised multiply-add function
+inline realM MultiplyAddVector(realM cvec, const realM avec, const real bval) {
+ #if USE_VECTOR_MAD == 1
+ cvec += avec * bval;
+ #else
+ #if VWM == 1
+ MultiplyAdd(cvec, avec, bval);
+ #elif VWM == 2
+ MultiplyAdd(cvec.x , avec.x, bval);
+ MultiplyAdd(cvec.y , avec.y, bval);
+ #elif VWM == 4
+ MultiplyAdd(cvec.x , avec.x, bval);
+ MultiplyAdd(cvec.y , avec.y, bval);
+ MultiplyAdd(cvec.z , avec.z, bval);
+ MultiplyAdd(cvec.w , avec.w, bval);
+ #elif VWM == 8
+ MultiplyAdd(cvec.s0, avec.s0, bval);
+ MultiplyAdd(cvec.s1, avec.s1, bval);
+ MultiplyAdd(cvec.s2, avec.s2, bval);
+ MultiplyAdd(cvec.s3, avec.s3, bval);
+ MultiplyAdd(cvec.s4, avec.s4, bval);
+ MultiplyAdd(cvec.s5, avec.s5, bval);
+ MultiplyAdd(cvec.s6, avec.s6, bval);
+ MultiplyAdd(cvec.s7, avec.s7, bval);
+ #elif VWM == 16
+ MultiplyAdd(cvec.s0, avec.s0, bval);
+ MultiplyAdd(cvec.s1, avec.s1, bval);
+ MultiplyAdd(cvec.s2, avec.s2, bval);
+ MultiplyAdd(cvec.s3, avec.s3, bval);
+ MultiplyAdd(cvec.s4, avec.s4, bval);
+ MultiplyAdd(cvec.s5, avec.s5, bval);
+ MultiplyAdd(cvec.s6, avec.s6, bval);
+ MultiplyAdd(cvec.s7, avec.s7, bval);
+ MultiplyAdd(cvec.s8, avec.s8, bval);
+ MultiplyAdd(cvec.s9, avec.s9, bval);
+ MultiplyAdd(cvec.sA, avec.sA, bval);
+ MultiplyAdd(cvec.sB, avec.sB, bval);
+ MultiplyAdd(cvec.sC, avec.sC, bval);
+ MultiplyAdd(cvec.sD, avec.sD, bval);
+ MultiplyAdd(cvec.sE, avec.sE, bval);
+ MultiplyAdd(cvec.sF, avec.sF, bval);
+ #endif
+ #endif
+ return cvec;
+}
+
+// Performs the actual computation: Cpm += Apm * Bpm
+inline void MultiplyAccumulate(realM cpm[NWI][MWI/VWM], realM apm[MWI/VWM], realN bpm[NWI/VWN]) {
+ #pragma unroll
+ for (int ni=0; ni<NWI/VWN; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWI/VWM; ++mi) {
+ #if VWN == 1
+ cpm[ni*VWN + 0][mi] = MultiplyAddVector(cpm[ni*VWN + 0][mi], apm[mi], bpm[ni]);
+ #elif VWN == 2
+ cpm[ni*VWN + 0][mi] = MultiplyAddVector(cpm[ni*VWN + 0][mi], apm[mi], bpm[ni].x);
+ cpm[ni*VWN + 1][mi] = MultiplyAddVector(cpm[ni*VWN + 1][mi], apm[mi], bpm[ni].y);
+ #elif VWN == 4
+ cpm[ni*VWN + 0][mi] = MultiplyAddVector(cpm[ni*VWN + 0][mi], apm[mi], bpm[ni].x);
+ cpm[ni*VWN + 1][mi] = MultiplyAddVector(cpm[ni*VWN + 1][mi], apm[mi], bpm[ni].y);
+ cpm[ni*VWN + 2][mi] = MultiplyAddVector(cpm[ni*VWN + 2][mi], apm[mi], bpm[ni].z);
+ cpm[ni*VWN + 3][mi] = MultiplyAddVector(cpm[ni*VWN + 3][mi], apm[mi], bpm[ni].w);
+ #elif VWN == 8
+ cpm[ni*VWN + 0][mi] = MultiplyAddVector(cpm[ni*VWN + 0][mi], apm[mi], bpm[ni].s0);
+ cpm[ni*VWN + 1][mi] = MultiplyAddVector(cpm[ni*VWN + 1][mi], apm[mi], bpm[ni].s1);
+ cpm[ni*VWN + 2][mi] = MultiplyAddVector(cpm[ni*VWN + 2][mi], apm[mi], bpm[ni].s2);
+ cpm[ni*VWN + 3][mi] = MultiplyAddVector(cpm[ni*VWN + 3][mi], apm[mi], bpm[ni].s3);
+ cpm[ni*VWN + 4][mi] = MultiplyAddVector(cpm[ni*VWN + 4][mi], apm[mi], bpm[ni].s4);
+ cpm[ni*VWN + 5][mi] = MultiplyAddVector(cpm[ni*VWN + 5][mi], apm[mi], bpm[ni].s5);
+ cpm[ni*VWN + 6][mi] = MultiplyAddVector(cpm[ni*VWN + 6][mi], apm[mi], bpm[ni].s6);
+ cpm[ni*VWN + 7][mi] = MultiplyAddVector(cpm[ni*VWN + 7][mi], apm[mi], bpm[ni].s7);
+ #elif VWN == 16
+ cpm[ni*VWN + 0 ][mi] = MultiplyAddVector(cpm[ni*VWN + 0 ][mi], apm[mi], bpm[ni].s0);
+ cpm[ni*VWN + 1 ][mi] = MultiplyAddVector(cpm[ni*VWN + 1 ][mi], apm[mi], bpm[ni].s1);
+ cpm[ni*VWN + 2 ][mi] = MultiplyAddVector(cpm[ni*VWN + 2 ][mi], apm[mi], bpm[ni].s2);
+ cpm[ni*VWN + 3 ][mi] = MultiplyAddVector(cpm[ni*VWN + 3 ][mi], apm[mi], bpm[ni].s3);
+ cpm[ni*VWN + 4 ][mi] = MultiplyAddVector(cpm[ni*VWN + 4 ][mi], apm[mi], bpm[ni].s4);
+ cpm[ni*VWN + 5 ][mi] = MultiplyAddVector(cpm[ni*VWN + 5 ][mi], apm[mi], bpm[ni].s5);
+ cpm[ni*VWN + 6 ][mi] = MultiplyAddVector(cpm[ni*VWN + 6 ][mi], apm[mi], bpm[ni].s6);
+ cpm[ni*VWN + 7 ][mi] = MultiplyAddVector(cpm[ni*VWN + 7 ][mi], apm[mi], bpm[ni].s7);
+ cpm[ni*VWN + 8 ][mi] = MultiplyAddVector(cpm[ni*VWN + 8 ][mi], apm[mi], bpm[ni].s8);
+ cpm[ni*VWN + 9 ][mi] = MultiplyAddVector(cpm[ni*VWN + 9 ][mi], apm[mi], bpm[ni].s9);
+ cpm[ni*VWN + 10][mi] = MultiplyAddVector(cpm[ni*VWN + 10][mi], apm[mi], bpm[ni].sA);
+ cpm[ni*VWN + 11][mi] = MultiplyAddVector(cpm[ni*VWN + 11][mi], apm[mi], bpm[ni].sB);
+ cpm[ni*VWN + 12][mi] = MultiplyAddVector(cpm[ni*VWN + 12][mi], apm[mi], bpm[ni].sC);
+ cpm[ni*VWN + 13][mi] = MultiplyAddVector(cpm[ni*VWN + 13][mi], apm[mi], bpm[ni].sD);
+ cpm[ni*VWN + 14][mi] = MultiplyAddVector(cpm[ni*VWN + 14][mi], apm[mi], bpm[ni].sE);
+ cpm[ni*VWN + 15][mi] = MultiplyAddVector(cpm[ni*VWN + 15][mi], apm[mi], bpm[ni].sF);
+ #endif
+ }
+ }
+}
+
+// =================================================================================================
+
+// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
+// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
+inline void StoreResults(__global realM* cgm, realM cpm[NWI][MWI/VWM], const int kSizeM,
+ const real alpha, const real beta) {
+ #pragma unroll
+ for (int ni=0; ni<NWI; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWI/VWM; ++mi) {
+ #if STRM == 0
+ int mg = mi + get_local_id(0)*(MWI/VWM);
+ #elif STRM == 1
+ int mg = get_local_id(0) + mi*MDIMC;
+ #endif
+ #if STRN == 0
+ int ng = ni + get_local_id(1)*NWI;
+ #elif STRN == 1
+ int ng = ni%VWN + get_local_id(1)*VWN + (ni/VWN)*VWN*NDIMC;
+ #endif
+ int idm = mg + get_group_id(0)*(MWG/VWM);
+ int idn = ng + get_group_id(1)*NWG;
+
+ // The final multiplication with alpha and the addition with beta*C
+ int index = idn*(kSizeM/VWM) + idm;
+ realM cval = cgm[index];
+ #if VWM == 1
+ AXPBY(cgm[index], alpha, cpm[ni][mi], beta, cval);
+ #elif VWM == 2
+ AXPBY(cgm[index].x, alpha, cpm[ni][mi].x, beta, cval.x);
+ AXPBY(cgm[index].y, alpha, cpm[ni][mi].y, beta, cval.y);
+ #elif VWM == 4
+ AXPBY(cgm[index].x, alpha, cpm[ni][mi].x, beta, cval.x);
+ AXPBY(cgm[index].y, alpha, cpm[ni][mi].y, beta, cval.y);
+ AXPBY(cgm[index].z, alpha, cpm[ni][mi].z, beta, cval.z);
+ AXPBY(cgm[index].w, alpha, cpm[ni][mi].w, beta, cval.w);
+ #elif VWM == 8
+ AXPBY(cgm[index].s0, alpha, cpm[ni][mi].s0, beta, cval.s0);
+ AXPBY(cgm[index].s1, alpha, cpm[ni][mi].s1, beta, cval.s1);
+ AXPBY(cgm[index].s2, alpha, cpm[ni][mi].s2, beta, cval.s2);
+ AXPBY(cgm[index].s3, alpha, cpm[ni][mi].s3, beta, cval.s3);
+ AXPBY(cgm[index].s4, alpha, cpm[ni][mi].s4, beta, cval.s4);
+ AXPBY(cgm[index].s5, alpha, cpm[ni][mi].s5, beta, cval.s5);
+ AXPBY(cgm[index].s6, alpha, cpm[ni][mi].s6, beta, cval.s6);
+ AXPBY(cgm[index].s7, alpha, cpm[ni][mi].s7, beta, cval.s7);
+ #elif VWM == 16
+ AXPBY(cgm[index].s0, alpha, cpm[ni][mi].s0, beta, cval.s0);
+ AXPBY(cgm[index].s1, alpha, cpm[ni][mi].s1, beta, cval.s1);
+ AXPBY(cgm[index].s2, alpha, cpm[ni][mi].s2, beta, cval.s2);
+ AXPBY(cgm[index].s3, alpha, cpm[ni][mi].s3, beta, cval.s3);
+ AXPBY(cgm[index].s4, alpha, cpm[ni][mi].s4, beta, cval.s4);
+ AXPBY(cgm[index].s5, alpha, cpm[ni][mi].s5, beta, cval.s5);
+ AXPBY(cgm[index].s6, alpha, cpm[ni][mi].s6, beta, cval.s6);
+ AXPBY(cgm[index].s7, alpha, cpm[ni][mi].s7, beta, cval.s7);
+ AXPBY(cgm[index].s8, alpha, cpm[ni][mi].s8, beta, cval.s8);
+ AXPBY(cgm[index].s9, alpha, cpm[ni][mi].s9, beta, cval.s9);
+ AXPBY(cgm[index].sA, alpha, cpm[ni][mi].sA, beta, cval.sA);
+ AXPBY(cgm[index].sB, alpha, cpm[ni][mi].sB, beta, cval.sB);
+ AXPBY(cgm[index].sC, alpha, cpm[ni][mi].sC, beta, cval.sC);
+ AXPBY(cgm[index].sD, alpha, cpm[ni][mi].sD, beta, cval.sD);
+ AXPBY(cgm[index].sE, alpha, cpm[ni][mi].sE, beta, cval.sE);
+ AXPBY(cgm[index].sF, alpha, cpm[ni][mi].sF, beta, cval.sF);
+ #endif
+ }
+ }
+}
+
+// =================================================================================================
+
+// Main body of the matrix-multiplication algorithm. It calls the (inlined) functions above.
+inline void XgemmBody(const int kSizeM, const int kSizeN, const int kSizeK,
+ const __global realM* restrict agm, const __global realN* restrict bgm,
+ __global realM* cgm, realM cpm[NWI][MWI/VWM]
+ #if SA == 1 && SB == 1
+ , __local realM* alm, __local realN* blm
+ #elif SA == 1
+ , __local realM* alm
+ #elif SB == 1
+ , __local realN* blm
+ #endif
+ ) {
+
+ // Allocates workitem-private memory (registers)
+ realM apm[MWI/VWM];
+ realN bpm[NWI/VWN];
+
+ // Combined thread identifier (volatile to disable caching)
+ #if SA == 1 || SB == 1
+ volatile int tid = get_local_id(0) + MDIMC*get_local_id(1);
+ #endif
+
+ // Initializes the accumulation registers
+ InitAccRegisters(cpm);
+
+ // Loops over all workgroup tiles
+ for (int kwg=0; kwg<kSizeK; kwg+=KWG) {
+
+ // Loads data: off-chip --> local (matrix A)
+ #if SA == 1
+ GlobalToLocalA(agm, alm, kSizeM, tid, kwg);
+ #endif
+ // Loads data: off-chip --> local (matrix B)
+ #if SB == 1
+ GlobalToLocalB(bgm, blm, kSizeN, tid, kwg);
+ #endif
+ #if SA == 1 || SB == 1
+ barrier(CLK_LOCAL_MEM_FENCE);
+ #endif
+
+ // Loops over all workitem tiles, unrolled by a factor KWI
+ for (int pwi=0; pwi<KWG; pwi+=KWI) {
+ #pragma unroll
+ for (int pit=0; pit<KWI; ++pit) {
+ #if SA == 0 || SB == 0
+ int idk = kwg + pwi + pit;
+ #endif
+ #if SA == 1 || SB == 1
+ int kg = pwi+pit;
+ #endif
+
+ // Loads data: local --> private (matrix A)
+ #if SA == 1
+ LocalToPrivateA(alm, apm, kg);
+ // Loads data: off-chip --> private (matrix A)
+ #else
+ GlobalToPrivateA(agm, apm, kSizeM, idk, kwg);
+ #endif
+
+ // Loads data: local --> private (matrix B)
+ #if SB == 1
+ LocalToPrivateB(blm, bpm, kg);
+ // Loads data: off-chip --> private (matrix B)
+ #else
+ GlobalToPrivateB(bgm, bpm, kSizeN, idk);
+ #endif
+
+ // Performs the accumulation (Cpm += Apm * Bpm)
+ MultiplyAccumulate(cpm, apm, bpm);
+ }
+ }
+ #if SA == 1 || SB == 1
+ barrier(CLK_LOCAL_MEM_FENCE);
+ #endif
+ }
+}
+
+// =================================================================================================
+// The upper-triangular and lower-triangular kernels are only used in special cases
+#if defined(ROUTINE_SYRK) || defined(ROUTINE_HERK) || defined(ROUTINE_SYR2K) || defined(ROUTINE_HER2K)
+
+// Main entry point of the kernel. This is the upper-triangular version.
+__attribute__((reqd_work_group_size(MDIMC, NDIMC, 1)))
+__kernel void XgemmUpper(const int kSizeN, const int kSizeK,
+ const real alpha, const real beta,
+ const __global realM* restrict agm,
+ const __global realN* restrict bgm,
+ __global realM* cgm) {
+
+ // Skip these threads if they do not contain threads contributing to the upper-triangle
+ if (get_group_id(1)*NWG < get_group_id(0)*MWG) {
+ return;
+ }
+
+ // Allocates workgroup-private memory (local memory)
+ #if SA == 1
+ __local realM alm[KWG * MWG/VWM];
+ #endif
+ #if SB == 1
+ __local realN blm[KWG * NWG/VWN];
+ #endif
+
+ // Computes the matrix-multiplication and stores the result in register memory
+ realM cpm[NWI][MWI/VWM];
+ #if SA == 1 && SB == 1
+ XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm, blm);
+ #elif SA == 1
+ XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm);
+ #elif SB == 1
+ XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, blm);
+ #else
+ XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm);
+ #endif
+
+ // Stores an MWG * NWG tile of results and performs the multiplication with alpha and beta
+ StoreResults(cgm, cpm, kSizeN, alpha, beta);
+}
+
+// Main entry point of the kernel. This is the lower-triangular version.
+__attribute__((reqd_work_group_size(MDIMC, NDIMC, 1)))
+__kernel void XgemmLower(const int kSizeN, const int kSizeK,
+ const real alpha, const real beta,
+ const __global realM* restrict agm,
+ const __global realN* restrict bgm,
+ __global realM* cgm) {
+
+ // Skip these threads if they do not contain threads contributing to the lower-triangle
+ if (get_group_id(1)*NWG > get_group_id(0)*MWG) {
+ return;
+ }
+
+ // Allocates workgroup-private memory (local memory)
+ #if SA == 1
+ __local realM alm[KWG * MWG/VWM];
+ #endif
+ #if SB == 1
+ __local realN blm[KWG * NWG/VWN];
+ #endif
+
+ // Computes the matrix-multiplication and stores the result in register memory
+ realM cpm[NWI][MWI/VWM];
+ #if SA == 1 && SB == 1
+ XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm, blm);
+ #elif SA == 1
+ XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm);
+ #elif SB == 1
+ XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, blm);
+ #else
+ XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm);
+ #endif
+
+ // Stores an MWG * NWG tile of results and performs the multiplication with alpha and beta
+ StoreResults(cgm, cpm, kSizeN, alpha, beta);
+}
+
+// =================================================================================================
+// If not using a triangular version, include the regular kernel
+#else
+
+// Main entry point of the kernel. This is the regular full version.
+__attribute__((reqd_work_group_size(MDIMC, NDIMC, 1)))
+__kernel void Xgemm(const int kSizeM, const int kSizeN, const int kSizeK,
+ const real alpha, const real beta,
+ const __global realM* restrict agm,
+ const __global realN* restrict bgm,
+ __global realM* cgm) {
+
+ // Allocates workgroup-private memory (local memory)
+ #if SA == 1
+ __local realM alm[KWG * MWG/VWM];
+ #endif
+ #if SB == 1
+ __local realN blm[KWG * NWG/VWN];
+ #endif
+
+ // Computes the matrix-multiplication and stores the result in register memory
+ realM cpm[NWI][MWI/VWM];
+ #if SA == 1 && SB == 1
+ XgemmBody(kSizeM, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm, blm);
+ #elif SA == 1
+ XgemmBody(kSizeM, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm);
+ #elif SB == 1
+ XgemmBody(kSizeM, kSizeN, kSizeK, agm, bgm, cgm, cpm, blm);
+ #else
+ XgemmBody(kSizeM, kSizeN, kSizeK, agm, bgm, cgm, cpm);
+ #endif
+
+ // Stores an MWG * NWG tile of results and performs the multiplication with alpha and beta
+ StoreResults(cgm, cpm, kSizeM, alpha, beta);
+}
+
+#endif
+// =================================================================================================
+
+// End of the C++11 raw string literal
+)"
+
+// =================================================================================================