summaryrefslogtreecommitdiff
path: root/src/kernels/level3/xgemm_direct_part1.opencl
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernels/level3/xgemm_direct_part1.opencl')
-rw-r--r--src/kernels/level3/xgemm_direct_part1.opencl273
1 files changed, 273 insertions, 0 deletions
diff --git a/src/kernels/level3/xgemm_direct_part1.opencl b/src/kernels/level3/xgemm_direct_part1.opencl
new file mode 100644
index 00000000..a8bd450e
--- /dev/null
+++ b/src/kernels/level3/xgemm_direct_part1.opencl
@@ -0,0 +1,273 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This is a generic GEMM kernel that works for all sizes and configurations: it doesn't require any
+// pre and and post-processing kernels.
+//
+// This kernel is seperated into three files. This is part 1 out of 3.
+//
+// =================================================================================================
+
+// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
+// literal). Comment-out this line for syntax-highlighting when developing.
+R"(
+
+// Parameters set by the tuner or by the database. Here they are given a basic default value in case
+// this kernel file is used outside of the CLBlast library. Note that all parameters here have a
+// suffix 'D' to denote that they are for the 'direct' version of the GEMM kernel.
+#ifndef WGD
+ #define WGD 8 // Tile-size in dimension M, N, and K (e.g. 8, 16, 32, 64)
+#endif
+#ifndef MDIMCD
+ #define MDIMCD 8 // Threads per workgroup in M-dimension (e.g. 8, 16, 32)
+#endif
+#ifndef NDIMCD
+ #define NDIMCD 8 // Threads per workgroup in N-dimension (e.g. 8, 16, 32)
+#endif
+#ifndef MDIMAD
+ #define MDIMAD 8 // Re-shaped tile dimension of matrix A: KDIMAD * MDIMAD
+#endif
+#ifndef NDIMBD
+ #define NDIMBD 8 // Re-shaped tile dimension of matrix B: KDIMBD * NDIMBD
+#endif
+#ifndef KWID
+ #define KWID 1 // Unroll factor of the WGD loop (smaller or equal than WGD)
+#endif
+#ifndef VWMD
+ #define VWMD 1 // Vector width of matrices A and C
+#endif
+#ifndef VWND
+ #define VWND 1 // Vector width of matrix B
+#endif
+#ifndef PADA
+ #define PADA 1 // Local memory padding for matrix A
+#endif
+#ifndef PADB
+ #define PADB 1 // Local memory padding for matrix B
+#endif
+
+// Helper parameters based on the above tuning parameters
+#define MWID (WGD/MDIMCD) // Work per work-item (M-dimension)
+#define NWID (WGD/NDIMCD) // Work per work-item (N-dimension)
+#define KDIMAD ((MDIMCD*NDIMCD)/(MDIMAD)) // Re-shaped tile dimension of matrix A: KDIMAD * MDIMAD
+#define KDIMBD ((MDIMCD*NDIMCD)/(NDIMBD)) // Re-shaped tile dimension of matrix B: KDIMBD * NDIMBD
+#define MWAD (WGD/MDIMAD) // Amount of loads-per-thread for matrix A (M-dimension)
+#define KWAD (WGD/KDIMAD) // Amount of loads-per-thread for matrix A (K-dimension)
+#define KWBD (WGD/KDIMBD) // Amount of loads-per-thread for matrix B (K-dimension)
+#define NWBD (WGD/NDIMBD) // Amount of loads-per-thread for matrix B (N-dimension)
+
+// =================================================================================================
+
+// Data-widths in dimension M
+#if VWMD == 1
+ typedef real realMD;
+#elif VWMD == 2
+ typedef real2 realMD;
+#elif VWMD == 4
+ typedef real4 realMD;
+#elif VWMD == 8
+ typedef real8 realMD;
+#elif VWMD == 16
+ typedef real16 realMD;
+#endif
+
+// Data-widths in dimension N
+#if VWND == 1
+ typedef real realND;
+#elif VWND == 2
+ typedef real2 realND;
+#elif VWND == 4
+ typedef real4 realND;
+#elif VWND == 8
+ typedef real8 realND;
+#elif VWND == 16
+ typedef real16 realND;
+#endif
+
+// =================================================================================================
+
+// Initializes the accumulation registers to zero
+inline void InitAccRegistersDirect(real cpm[NWID][MWID]) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ SetToZero(cpm[ni][mi]);
+ }
+ }
+}
+
+// =================================================================================================
+
+// Performs the actual computation: Cpm += Apm * Bpm
+inline void MultiplyAccumulateDirect(real cpm[NWID][MWID], real apm[MWID], real bpm[NWID]) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ MultiplyAdd(cpm[ni][mi], apm[mi], bpm[ni]);
+ }
+ }
+}
+
+// =================================================================================================
+
+// Loads global off-chip memory into thread-private register files. This function is specific for
+// loading the A input matrix.
+inline void GlobalToPrivateDirectA(const __global real* restrict agms, real apm[MWID],
+ const int a_ld, const int a_offset, const int idm, const int idk,
+ const int a_transpose, const int a_conjugate) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ const int a_index = (a_transpose) ? (idm + mi)*a_ld + idk : idk*a_ld + (idm + mi);
+ apm[mi] = agms[a_index + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(apm[mi]); }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToPrivateDirectB(const __global real* restrict bgms, real bpm[NWID],
+ const int b_ld, const int b_offset, const int idn, const int idk,
+ const int b_transpose, const int b_conjugate) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ const int b_index = (b_transpose) ? (idn + ni)*b_ld + idk : idk*b_ld + (idn + ni);
+ bpm[ni] = bgms[b_index + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(bpm[ni]); }
+ }
+}
+
+// Loads global off-chip memory into thread-private register files. This function is specific for
+// loading the A input matrix. This is the same as above but now includes a bounds check.
+inline void GlobalToPrivateCheckedA(const __global real* restrict agms, real apm[MWID],
+ const int a_ld, const int a_offset, const int idm, const int idk,
+ const int a_transpose, const int a_conjugate,
+ const int kSizeM) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ if (idm + mi < kSizeM) {
+ const int a_index = (a_transpose) ? (idm + mi)*a_ld + idk : idk*a_ld + (idm + mi);
+ apm[mi] = agms[a_index + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(apm[mi]); }
+ }
+ else {
+ SetToZero(apm[mi]);
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToPrivateCheckedB(const __global real* restrict bgms, real bpm[NWID],
+ const int b_ld, const int b_offset, const int idn, const int idk,
+ const int b_transpose, const int b_conjugate,
+ const int kSizeN) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ if (idn + ni < kSizeN) {
+ const int b_index = (b_transpose) ? (idn + ni)*b_ld + idk : idk*b_ld + (idn + ni);
+ bpm[ni] = bgms[b_index + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(bpm[ni]); }
+ }
+ else {
+ SetToZero(bpm[ni]);
+ }
+ }
+}
+
+// =================================================================================================
+
+// Caches on-chip local memory into per-thread private memory (registers). This function is specific
+// for caching the A input matrix.
+inline void LocalToPrivateDirectA(__local real* alm, real apm[MWID], const int kg,
+ const int a_transpose) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ const int mg = mi + get_local_id(0)*MWID;
+ const int index = (a_transpose) ? mg*(WGD + PADA) + kg : kg*(WGD + PADA) + mg;
+ apm[mi] = alm[index];
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void LocalToPrivateDirectB(__local real* blm, real bpm[NWID], const int kg,
+ const int b_transpose) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ const int ng = ni + get_local_id(1)*NWID;
+ const int index = (b_transpose) ? ng*(WGD + PADB) + kg : kg*(WGD + PADB) + ng;
+ bpm[ni] = blm[index];
+ }
+}
+
+// =================================================================================================
+
+// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
+// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
+inline void StoreResultsDirect(__global real* cgm, real cpm[NWID][MWID],
+ const int idm, const int idn,
+ const real alpha, const real beta,
+ const int c_ld, const int c_offset, const int c_transpose) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+
+ // Determines the destination index
+ int c_index = (c_transpose) ? (idm + mi)*c_ld + (idn + ni) : (idn + ni)*c_ld + (idm + mi);
+
+ // The final multiplication with alpha (in case beta == 0)
+ real result;
+ if (IsZero(beta)) {
+ Multiply(result, alpha, cpm[ni][mi]);
+ }
+ // The final multiplication with alpha and the addition with beta*C
+ else {
+ AXPBY(result, alpha, cpm[ni][mi], beta, cgm[c_index + c_offset]);
+ }
+ cgm[c_index + c_offset] = result;
+ }
+ }
+}
+
+// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
+// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
+inline void StoreResultsChecked(__global real* cgm, real cpm[NWID][MWID],
+ const int idm, const int idn, const int kSizeM, const int kSizeN,
+ const real alpha, const real beta,
+ const int c_ld, const int c_offset, const int c_transpose) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ if ((idm + mi) < kSizeM && (idn + ni) < kSizeN) {
+
+ // Determines the destination index
+ int c_index = (c_transpose) ? (idm + mi)*c_ld + (idn + ni) : (idn + ni)*c_ld + (idm + mi);
+
+ // The final multiplication with alpha (in case beta == 0)
+ real result;
+ if (IsZero(beta)) {
+ Multiply(result, alpha, cpm[ni][mi]);
+ }
+ // The final multiplication with alpha and the addition with beta*C
+ else {
+ AXPBY(result, alpha, cpm[ni][mi], beta, cgm[c_index + c_offset]);
+ }
+ cgm[c_index + c_offset] = result;
+ }
+ }
+ }
+}
+
+// =================================================================================================
+
+// End of the C++11 raw string literal
+)"
+
+// =================================================================================================