summaryrefslogtreecommitdiff
path: root/src/kernels/level3/xgemm_direct_part1.opencl
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernels/level3/xgemm_direct_part1.opencl')
-rw-r--r--src/kernels/level3/xgemm_direct_part1.opencl262
1 files changed, 108 insertions, 154 deletions
diff --git a/src/kernels/level3/xgemm_direct_part1.opencl b/src/kernels/level3/xgemm_direct_part1.opencl
index cb407824..2e5addef 100644
--- a/src/kernels/level3/xgemm_direct_part1.opencl
+++ b/src/kernels/level3/xgemm_direct_part1.opencl
@@ -10,7 +10,7 @@
// This is a generic GEMM kernel that works for all sizes and configurations: it doesn't require any
// pre and and post-processing kernels.
//
-// This kernel is seperated into three files. This is part 1 out of 2.
+// This kernel is seperated into three files. This is part 1 out of 3.
//
// =================================================================================================
@@ -92,196 +92,150 @@ R"(
// =================================================================================================
-// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
-// caching the A input matrix.
-inline void GlobalToLocalDirectA(const __global realMD* restrict agm, __local real* alm,
- const int a_ld, const int a_offset, const int kwg,
- const int a_transpose, const int a_conjugate) {
- #if MDIMCD == MDIMAD
- const int la0 = get_local_id(0);
- const int la1 = get_local_id(1);
- #else
- const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
- const int la0 = tid % MDIMAD;
- const int la1 = tid / MDIMAD;
- #endif
+// Initializes the accumulation registers to zero
+inline void InitAccRegistersDirect(real cpm[NWID][MWID]) {
#pragma unroll
- for (int mia=0; mia<MWAD/VWMD; ++mia) {
+ for (int mi=0; mi<MWID; ++mi) {
#pragma unroll
- for (int kia=0; kia<KWAD; ++kia) {
-
- // Computes the indices for the global memory
- int mg = mia + la0*(MWAD/VWMD);
- int kg = kia + la1*KWAD;
- int idm = (a_transpose) ? mg + kwg/VWMD : mg + GetGroupID0()*(WGD/VWMD);
- int idk = (a_transpose) ? kg + GetGroupID0()*WGD : kg + kwg;
-
- // Loads the data from global memory into the local memory
- const realMD avec = agm[idk*(a_ld/VWMD) + idm + a_offset];
- #if VWMD == 1
- alm[kg*(WGD + PADA) + mg] = avec;
- #elif VWMD == 2
- alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.x;
- alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.y;
- #elif VWMD == 4
- alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.x;
- alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.y;
- alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.z;
- alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.w;
- #elif VWMD == 8
- alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.s0;
- alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.s1;
- alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.s2;
- alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.s3;
- alm[kg*(WGD + PADA) + mg*VWMD + 4] = avec.s4;
- alm[kg*(WGD + PADA) + mg*VWMD + 5] = avec.s5;
- alm[kg*(WGD + PADA) + mg*VWMD + 6] = avec.s6;
- alm[kg*(WGD + PADA) + mg*VWMD + 7] = avec.s7;
- #elif VWMD == 16
- alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.s0;
- alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.s1;
- alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.s2;
- alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.s3;
- alm[kg*(WGD + PADA) + mg*VWMD + 4] = avec.s4;
- alm[kg*(WGD + PADA) + mg*VWMD + 5] = avec.s5;
- alm[kg*(WGD + PADA) + mg*VWMD + 6] = avec.s6;
- alm[kg*(WGD + PADA) + mg*VWMD + 7] = avec.s7;
- alm[kg*(WGD + PADA) + mg*VWMD + 8] = avec.s8;
- alm[kg*(WGD + PADA) + mg*VWMD + 9] = avec.s9;
- alm[kg*(WGD + PADA) + mg*VWMD + 10] = avec.sA;
- alm[kg*(WGD + PADA) + mg*VWMD + 11] = avec.sB;
- alm[kg*(WGD + PADA) + mg*VWMD + 12] = avec.sC;
- alm[kg*(WGD + PADA) + mg*VWMD + 13] = avec.sD;
- alm[kg*(WGD + PADA) + mg*VWMD + 14] = avec.sE;
- alm[kg*(WGD + PADA) + mg*VWMD + 15] = avec.sF;
- #endif
- if (a_conjugate) {
- for (int vm=0; vm<VWMD; ++vm) {
- COMPLEX_CONJUGATE(alm[kg*(WGD + PADA) + mg*VWMD + vm]);
- }
- }
+ for (int ni=0; ni<NWID; ++ni) {
+ SetToZero(cpm[ni][mi]);
}
}
}
-// Same as above, but now for the B input matrix
-inline void GlobalToLocalDirectB(const __global realND* restrict bgm, __local real* blm,
- const int b_ld, const int b_offset, const int kwg,
- const int b_transpose, const int b_conjugate) {
- #if MDIMCD == NDIMBD
- const int lb0 = get_local_id(0);
- const int lb1 = get_local_id(1);
- #else
- const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
- const int lb0 = tid % NDIMBD;
- const int lb1 = tid / NDIMBD;
- #endif
+// =================================================================================================
+
+// Performs the actual computation: Cpm += Apm * Bpm
+inline void MultiplyAccumulateDirect(real cpm[NWID][MWID], real apm[MWID], real bpm[NWID]) {
#pragma unroll
- for (int kib=0; kib<KWBD; ++kib) {
+ for (int ni=0; ni<NWID; ++ni) {
#pragma unroll
- for (int nib=0; nib<NWBD/VWND; ++nib) {
-
- // Computes the indices for the global memory
- int ng = nib + lb0*(NWBD/VWND);
- int kg = kib + lb1*KWBD;
- int idn = (b_transpose) ? ng + kwg/VWND : ng + GetGroupID1()*(WGD/VWND);
- int idk = (b_transpose) ? kg + GetGroupID1()*WGD : kg + kwg;
-
- // Loads the data from global memory into the local memory
- const realND bvec = bgm[idk*(b_ld/VWND) + idn + b_offset];
- #if VWND == 1
- blm[kg*(WGD + PADB) + ng] = bvec;
- #elif VWND == 2
- blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.x;
- blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.y;
- #elif VWND == 4
- blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.x;
- blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.y;
- blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.z;
- blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.w;
- #elif VWND == 8
- blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.s0;
- blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.s1;
- blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.s2;
- blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.s3;
- blm[kg*(WGD + PADB) + ng*VWND + 4] = bvec.s4;
- blm[kg*(WGD + PADB) + ng*VWND + 5] = bvec.s5;
- blm[kg*(WGD + PADB) + ng*VWND + 6] = bvec.s6;
- blm[kg*(WGD + PADB) + ng*VWND + 7] = bvec.s7;
- #elif VWND == 16
- blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.s0;
- blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.s1;
- blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.s2;
- blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.s3;
- blm[kg*(WGD + PADB) + ng*VWND + 4] = bvec.s4;
- blm[kg*(WGD + PADB) + ng*VWND + 5] = bvec.s5;
- blm[kg*(WGD + PADB) + ng*VWND + 6] = bvec.s6;
- blm[kg*(WGD + PADB) + ng*VWND + 7] = bvec.s7;
- blm[kg*(WGD + PADB) + ng*VWND + 8] = bvec.s8;
- blm[kg*(WGD + PADB) + ng*VWND + 9] = bvec.s9;
- blm[kg*(WGD + PADB) + ng*VWND + 10] = bvec.sA;
- blm[kg*(WGD + PADB) + ng*VWND + 11] = bvec.sB;
- blm[kg*(WGD + PADB) + ng*VWND + 12] = bvec.sC;
- blm[kg*(WGD + PADB) + ng*VWND + 13] = bvec.sD;
- blm[kg*(WGD + PADB) + ng*VWND + 14] = bvec.sE;
- blm[kg*(WGD + PADB) + ng*VWND + 15] = bvec.sF;
- #endif
- if (b_conjugate) {
- for (int vn=0; vn<VWND; ++vn) {
- COMPLEX_CONJUGATE(blm[kg*(WGD + PADB) + ng*VWND + vn]);
- }
- }
+ for (int mi=0; mi<MWID; ++mi) {
+ MultiplyAdd(cpm[ni][mi], apm[mi], bpm[ni]);
}
}
}
// =================================================================================================
-// Caches on-chip local memory into per-thread private memory (registers). This function is specific
-// for caching the A input matrix.
-inline void LocalToPrivateDirectA(__local real* alm, real apm[MWID], const int kg,
- const int a_transpose) {
+// Loads global off-chip memory into thread-private register files. This function is specific for
+// loading the A input matrix.
+inline void GlobalToPrivateDirectA(const __global real* restrict agms, real apm[MWID],
+ const int a_ld, const int a_offset, const int idm, const int idk,
+ const int a_transpose, const int a_conjugate) {
#pragma unroll
for (int mi=0; mi<MWID; ++mi) {
- const int mg = mi + get_local_id(0)*MWID;
- const int index = (a_transpose) ? mg*(WGD + PADA) + kg : kg*(WGD + PADA) + mg;
- apm[mi] = alm[index];
+ const int a_index = (a_transpose) ? (idm + mi)*a_ld + idk : idk*a_ld + (idm + mi);
+ apm[mi] = agms[a_index + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(apm[mi]); }
}
}
// Same as above, but now for the B input matrix
-inline void LocalToPrivateDirectB(__local real* blm, real bpm[NWID], const int kg,
- const int b_transpose) {
+inline void GlobalToPrivateDirectB(const __global real* restrict bgms, real bpm[NWID],
+ const int b_ld, const int b_offset, const int idn, const int idk,
+ const int b_transpose, const int b_conjugate) {
#pragma unroll
for (int ni=0; ni<NWID; ++ni) {
- const int ng = ni + get_local_id(1)*NWID;
- const int index = (b_transpose) ? ng*(WGD + PADB) + kg : kg*(WGD + PADB) + ng;
- bpm[ni] = blm[index];
+ const int b_index = (b_transpose) ? (idn + ni)*b_ld + idk : idk*b_ld + (idn + ni);
+ bpm[ni] = bgms[b_index + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(bpm[ni]); }
}
}
-// =================================================================================================
-
-// Initializes the accumulation registers to zero
-inline void InitAccRegistersDirect(real cpm[NWID][MWID]) {
+// Loads global off-chip memory into thread-private register files. This function is specific for
+// loading the A input matrix. This is the same as above but now includes a bounds check.
+inline void GlobalToPrivateCheckedA(const __global real* restrict agms, real apm[MWID],
+ const int a_ld, const int a_offset, const int idm, const int idk,
+ const int a_transpose, const int a_conjugate,
+ const int kSizeM) {
#pragma unroll
for (int mi=0; mi<MWID; ++mi) {
- #pragma unroll
- for (int ni=0; ni<NWID; ++ni) {
- SetToZero(cpm[ni][mi]);
+ if (idm + mi < kSizeM) {
+ const int a_index = (a_transpose) ? (idm + mi)*a_ld + idk : idk*a_ld + (idm + mi);
+ apm[mi] = agms[a_index + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(apm[mi]); }
+ }
+ else {
+ SetToZero(apm[mi]);
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToPrivateCheckedB(const __global real* restrict bgms, real bpm[NWID],
+ const int b_ld, const int b_offset, const int idn, const int idk,
+ const int b_transpose, const int b_conjugate,
+ const int kSizeN) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ if (idn + ni < kSizeN) {
+ const int b_index = (b_transpose) ? (idn + ni)*b_ld + idk : idk*b_ld + (idn + ni);
+ bpm[ni] = bgms[b_index + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(bpm[ni]); }
+ }
+ else {
+ SetToZero(bpm[ni]);
}
}
}
// =================================================================================================
-// Performs the actual computation: Cpm += Apm * Bpm
-inline void MultiplyAccumulateDirect(real cpm[NWID][MWID], real apm[MWID], real bpm[NWID]) {
+// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
+// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
+inline void StoreResultsDirect(__global real* cgm, real cpm[NWID][MWID],
+ const int idm, const int idn,
+ const real alpha, const real beta,
+ const int c_ld, const int c_offset, const int c_transpose) {
#pragma unroll
for (int ni=0; ni<NWID; ++ni) {
#pragma unroll
for (int mi=0; mi<MWID; ++mi) {
- MultiplyAdd(cpm[ni][mi], apm[mi], bpm[ni]);
+
+ // Determines the destination index
+ int c_index = (c_transpose) ? (idm + mi)*c_ld + (idn + ni) : (idn + ni)*c_ld + (idm + mi);
+
+ // The final multiplication with alpha (in case beta == 0)
+ real result;
+ if (IsZero(beta)) {
+ Multiply(result, alpha, cpm[ni][mi]);
+ }
+ // The final multiplication with alpha and the addition with beta*C
+ else {
+ AXPBY(result, alpha, cpm[ni][mi], beta, cgm[c_index + c_offset]);
+ }
+ cgm[c_index + c_offset] = result;
+ }
+ }
+}
+
+// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
+// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
+inline void StoreResultsChecked(__global real* cgm, real cpm[NWID][MWID],
+ const int idm, const int idn, const int kSizeM, const int kSizeN,
+ const real alpha, const real beta,
+ const int c_ld, const int c_offset, const int c_transpose) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ if ((idm + mi) < kSizeM && (idn + ni) < kSizeN) {
+
+ // Determines the destination index
+ int c_index = (c_transpose) ? (idm + mi)*c_ld + (idn + ni) : (idn + ni)*c_ld + (idm + mi);
+
+ // The final multiplication with alpha (in case beta == 0)
+ real result;
+ if (IsZero(beta)) {
+ Multiply(result, alpha, cpm[ni][mi]);
+ }
+ // The final multiplication with alpha and the addition with beta*C
+ else {
+ AXPBY(result, alpha, cpm[ni][mi], beta, cgm[c_index + c_offset]);
+ }
+ cgm[c_index + c_offset] = result;
+ }
}
}
}