summaryrefslogtreecommitdiff
path: root/src/kernels/level3/xgemm_direct_part2.opencl
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernels/level3/xgemm_direct_part2.opencl')
-rw-r--r--src/kernels/level3/xgemm_direct_part2.opencl314
1 files changed, 314 insertions, 0 deletions
diff --git a/src/kernels/level3/xgemm_direct_part2.opencl b/src/kernels/level3/xgemm_direct_part2.opencl
new file mode 100644
index 00000000..d77cbf65
--- /dev/null
+++ b/src/kernels/level3/xgemm_direct_part2.opencl
@@ -0,0 +1,314 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This is part 2 of 3 of the GEMM kernel. See part 1 for more information.
+//
+// =================================================================================================
+
+// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
+// literal). Comment-out this line for syntax-highlighting when developing.
+R"(
+
+// =================================================================================================
+
+// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
+// caching the A input matrix.
+inline void GlobalToLocalDirectA(const __global realMD* restrict agm, __local real* alm,
+ const int a_ld, const int a_offset, const int kwg,
+ const int a_transpose, const int a_conjugate) {
+ #if MDIMCD == MDIMAD
+ const int la0 = get_local_id(0);
+ const int la1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int la0 = tid % MDIMAD;
+ const int la1 = tid / MDIMAD;
+ #endif
+ #pragma unroll
+ for (int mia=0; mia<MWAD/VWMD; ++mia) {
+ #pragma unroll
+ for (int kia=0; kia<KWAD; ++kia) {
+
+ // Computes the indices for the global memory
+ int mg = mia + la0*(MWAD/VWMD);
+ int kg = kia + la1*KWAD;
+ int idm = (a_transpose) ? mg + kwg/VWMD : mg + GetGroupID0()*(WGD/VWMD);
+ int idk = (a_transpose) ? kg + GetGroupID0()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ const realMD avec = agm[idk*(a_ld/VWMD) + idm + a_offset];
+ #if VWMD == 1
+ alm[kg*(WGD + PADA) + mg] = avec;
+ #elif VWMD == 2
+ alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.x;
+ alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.y;
+ #elif VWMD == 4
+ alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.x;
+ alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.y;
+ alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.z;
+ alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.w;
+ #elif VWMD == 8
+ alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.s0;
+ alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.s1;
+ alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.s2;
+ alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.s3;
+ alm[kg*(WGD + PADA) + mg*VWMD + 4] = avec.s4;
+ alm[kg*(WGD + PADA) + mg*VWMD + 5] = avec.s5;
+ alm[kg*(WGD + PADA) + mg*VWMD + 6] = avec.s6;
+ alm[kg*(WGD + PADA) + mg*VWMD + 7] = avec.s7;
+ #elif VWMD == 16
+ alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.s0;
+ alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.s1;
+ alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.s2;
+ alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.s3;
+ alm[kg*(WGD + PADA) + mg*VWMD + 4] = avec.s4;
+ alm[kg*(WGD + PADA) + mg*VWMD + 5] = avec.s5;
+ alm[kg*(WGD + PADA) + mg*VWMD + 6] = avec.s6;
+ alm[kg*(WGD + PADA) + mg*VWMD + 7] = avec.s7;
+ alm[kg*(WGD + PADA) + mg*VWMD + 8] = avec.s8;
+ alm[kg*(WGD + PADA) + mg*VWMD + 9] = avec.s9;
+ alm[kg*(WGD + PADA) + mg*VWMD + 10] = avec.sA;
+ alm[kg*(WGD + PADA) + mg*VWMD + 11] = avec.sB;
+ alm[kg*(WGD + PADA) + mg*VWMD + 12] = avec.sC;
+ alm[kg*(WGD + PADA) + mg*VWMD + 13] = avec.sD;
+ alm[kg*(WGD + PADA) + mg*VWMD + 14] = avec.sE;
+ alm[kg*(WGD + PADA) + mg*VWMD + 15] = avec.sF;
+ #endif
+ if (a_conjugate) {
+ for (int vm=0; vm<VWMD; ++vm) {
+ COMPLEX_CONJUGATE(alm[kg*(WGD + PADA) + mg*VWMD + vm]);
+ }
+ }
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToLocalDirectB(const __global realND* restrict bgm, __local real* blm,
+ const int b_ld, const int b_offset, const int kwg,
+ const int b_transpose, const int b_conjugate) {
+ #if MDIMCD == NDIMBD
+ const int lb0 = get_local_id(0);
+ const int lb1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int lb0 = tid % NDIMBD;
+ const int lb1 = tid / NDIMBD;
+ #endif
+ #pragma unroll
+ for (int kib=0; kib<KWBD; ++kib) {
+ #pragma unroll
+ for (int nib=0; nib<NWBD/VWND; ++nib) {
+
+ // Computes the indices for the global memory
+ int ng = nib + lb0*(NWBD/VWND);
+ int kg = kib + lb1*KWBD;
+ int idn = (b_transpose) ? ng + kwg/VWND : ng + GetGroupID1()*(WGD/VWND);
+ int idk = (b_transpose) ? kg + GetGroupID1()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ const realND bvec = bgm[idk*(b_ld/VWND) + idn + b_offset];
+ #if VWND == 1
+ blm[kg*(WGD + PADB) + ng] = bvec;
+ #elif VWND == 2
+ blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.x;
+ blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.y;
+ #elif VWND == 4
+ blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.x;
+ blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.y;
+ blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.z;
+ blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.w;
+ #elif VWND == 8
+ blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.s0;
+ blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.s1;
+ blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.s2;
+ blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.s3;
+ blm[kg*(WGD + PADB) + ng*VWND + 4] = bvec.s4;
+ blm[kg*(WGD + PADB) + ng*VWND + 5] = bvec.s5;
+ blm[kg*(WGD + PADB) + ng*VWND + 6] = bvec.s6;
+ blm[kg*(WGD + PADB) + ng*VWND + 7] = bvec.s7;
+ #elif VWND == 16
+ blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.s0;
+ blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.s1;
+ blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.s2;
+ blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.s3;
+ blm[kg*(WGD + PADB) + ng*VWND + 4] = bvec.s4;
+ blm[kg*(WGD + PADB) + ng*VWND + 5] = bvec.s5;
+ blm[kg*(WGD + PADB) + ng*VWND + 6] = bvec.s6;
+ blm[kg*(WGD + PADB) + ng*VWND + 7] = bvec.s7;
+ blm[kg*(WGD + PADB) + ng*VWND + 8] = bvec.s8;
+ blm[kg*(WGD + PADB) + ng*VWND + 9] = bvec.s9;
+ blm[kg*(WGD + PADB) + ng*VWND + 10] = bvec.sA;
+ blm[kg*(WGD + PADB) + ng*VWND + 11] = bvec.sB;
+ blm[kg*(WGD + PADB) + ng*VWND + 12] = bvec.sC;
+ blm[kg*(WGD + PADB) + ng*VWND + 13] = bvec.sD;
+ blm[kg*(WGD + PADB) + ng*VWND + 14] = bvec.sE;
+ blm[kg*(WGD + PADB) + ng*VWND + 15] = bvec.sF;
+ #endif
+ if (b_conjugate) {
+ for (int vn=0; vn<VWND; ++vn) {
+ COMPLEX_CONJUGATE(blm[kg*(WGD + PADB) + ng*VWND + vn]);
+ }
+ }
+ }
+ }
+}
+
+// =================================================================================================
+
+// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
+// caching the A input matrix. In contrast to the functions above, this function performs doesn't
+// use the vector data-types.
+inline void GlobalToLocalScalarA(const __global real* restrict agms, __local real* alm,
+ const int a_ld, const int a_offset, const int kwg,
+ const int a_transpose, const int a_conjugate) {
+ #if MDIMCD == MDIMAD
+ const int la0 = get_local_id(0);
+ const int la1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int la0 = tid % MDIMAD;
+ const int la1 = tid / MDIMAD;
+ #endif
+ #pragma unroll
+ for (int mia=0; mia<MWAD; ++mia) {
+ #pragma unroll
+ for (int kia=0; kia<KWAD; ++kia) {
+
+ // Computes the indices for the global memory
+ int mg = mia + la0*MWAD;
+ int kg = kia + la1*KWAD;
+ int idm = (a_transpose) ? mg + kwg : mg + GetGroupID0()*WGD;
+ int idk = (a_transpose) ? kg + GetGroupID0()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ real result = agms[idk*a_ld + idm + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(result); }
+ alm[kg*(WGD + PADA) + mg] = result;
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToLocalScalarB(const __global real* restrict bgms, __local real* blm,
+ const int b_ld, const int b_offset, const int kwg,
+ const int b_transpose, const int b_conjugate) {
+ #if MDIMCD == NDIMBD
+ const int lb0 = get_local_id(0);
+ const int lb1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int lb0 = tid % NDIMBD;
+ const int lb1 = tid / NDIMBD;
+ #endif
+ #pragma unroll
+ for (int kib=0; kib<KWBD; ++kib) {
+ #pragma unroll
+ for (int nib=0; nib<NWBD; ++nib) {
+
+ // Computes the indices for the global memory
+ int ng = nib + lb0*NWBD;
+ int kg = kib + lb1*KWBD;
+ int idn = (b_transpose) ? ng + kwg : ng + GetGroupID1()*WGD;
+ int idk = (b_transpose) ? kg + GetGroupID1()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ real result = bgms[idk*b_ld + idn + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(result); }
+ blm[kg*(WGD + PADB) + ng] = result;
+ }
+ }
+}
+
+// =================================================================================================
+
+// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
+// caching the A input matrix. In contrast to the functions above, this function performs bounds
+// checks and doesn't use the vector data-types.
+inline void GlobalToLocalCheckedA(const __global real* restrict agms, __local real* alm,
+ const int a_ld, const int a_offset, const int kwg,
+ const int a_transpose, const int a_conjugate,
+ const int kSizeM, const int kSizeK) {
+ #if MDIMCD == MDIMAD
+ const int la0 = get_local_id(0);
+ const int la1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int la0 = tid % MDIMAD;
+ const int la1 = tid / MDIMAD;
+ #endif
+ #pragma unroll
+ for (int mia=0; mia<MWAD; ++mia) {
+ #pragma unroll
+ for (int kia=0; kia<KWAD; ++kia) {
+
+ // Computes the indices for the global memory
+ int mg = mia + la0*MWAD;
+ int kg = kia + la1*KWAD;
+ int idm = (a_transpose) ? mg + kwg : mg + GetGroupID0()*WGD;
+ int idk = (a_transpose) ? kg + GetGroupID0()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ int condition = (a_transpose) ? idm < kSizeK : idm < kSizeM;
+ if (condition) {
+ real result = agms[idk*a_ld + idm + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(result); }
+ alm[kg*(WGD + PADA) + mg] = result;
+ }
+ else {
+ SetToZero(alm[kg*(WGD + PADA) + mg]);
+ }
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToLocalCheckedB(const __global real* restrict bgms, __local real* blm,
+ const int b_ld, const int b_offset, const int kwg,
+ const int b_transpose, const int b_conjugate,
+ const int kSizeN, const int kSizeK) {
+ #if MDIMCD == NDIMBD
+ const int lb0 = get_local_id(0);
+ const int lb1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int lb0 = tid % NDIMBD;
+ const int lb1 = tid / NDIMBD;
+ #endif
+ #pragma unroll
+ for (int kib=0; kib<KWBD; ++kib) {
+ #pragma unroll
+ for (int nib=0; nib<NWBD; ++nib) {
+
+ // Computes the indices for the global memory
+ int ng = nib + lb0*NWBD;
+ int kg = kib + lb1*KWBD;
+ int idn = (b_transpose) ? ng + kwg : ng + GetGroupID1()*WGD;
+ int idk = (b_transpose) ? kg + GetGroupID1()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ int condition = (b_transpose) ? idn < kSizeK : idn < kSizeN;
+ if (condition) {
+ real result = bgms[idk*b_ld + idn + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(result); }
+ blm[kg*(WGD + PADB) + ng] = result;
+ }
+ else {
+ SetToZero(blm[kg*(WGD + PADB) + ng]);
+ }
+ }
+ }
+}
+
+// =================================================================================================
+
+// End of the C++11 raw string literal
+)"
+
+// =================================================================================================