summaryrefslogtreecommitdiff
path: root/src/kernels/level3
diff options
context:
space:
mode:
Diffstat (limited to 'src/kernels/level3')
-rw-r--r--src/kernels/level3/xgemm_direct_part1.opencl273
-rw-r--r--src/kernels/level3/xgemm_direct_part2.opencl314
-rw-r--r--src/kernels/level3/xgemm_direct_part3.opencl214
3 files changed, 801 insertions, 0 deletions
diff --git a/src/kernels/level3/xgemm_direct_part1.opencl b/src/kernels/level3/xgemm_direct_part1.opencl
new file mode 100644
index 00000000..a8bd450e
--- /dev/null
+++ b/src/kernels/level3/xgemm_direct_part1.opencl
@@ -0,0 +1,273 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This is a generic GEMM kernel that works for all sizes and configurations: it doesn't require any
+// pre and and post-processing kernels.
+//
+// This kernel is seperated into three files. This is part 1 out of 3.
+//
+// =================================================================================================
+
+// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
+// literal). Comment-out this line for syntax-highlighting when developing.
+R"(
+
+// Parameters set by the tuner or by the database. Here they are given a basic default value in case
+// this kernel file is used outside of the CLBlast library. Note that all parameters here have a
+// suffix 'D' to denote that they are for the 'direct' version of the GEMM kernel.
+#ifndef WGD
+ #define WGD 8 // Tile-size in dimension M, N, and K (e.g. 8, 16, 32, 64)
+#endif
+#ifndef MDIMCD
+ #define MDIMCD 8 // Threads per workgroup in M-dimension (e.g. 8, 16, 32)
+#endif
+#ifndef NDIMCD
+ #define NDIMCD 8 // Threads per workgroup in N-dimension (e.g. 8, 16, 32)
+#endif
+#ifndef MDIMAD
+ #define MDIMAD 8 // Re-shaped tile dimension of matrix A: KDIMAD * MDIMAD
+#endif
+#ifndef NDIMBD
+ #define NDIMBD 8 // Re-shaped tile dimension of matrix B: KDIMBD * NDIMBD
+#endif
+#ifndef KWID
+ #define KWID 1 // Unroll factor of the WGD loop (smaller or equal than WGD)
+#endif
+#ifndef VWMD
+ #define VWMD 1 // Vector width of matrices A and C
+#endif
+#ifndef VWND
+ #define VWND 1 // Vector width of matrix B
+#endif
+#ifndef PADA
+ #define PADA 1 // Local memory padding for matrix A
+#endif
+#ifndef PADB
+ #define PADB 1 // Local memory padding for matrix B
+#endif
+
+// Helper parameters based on the above tuning parameters
+#define MWID (WGD/MDIMCD) // Work per work-item (M-dimension)
+#define NWID (WGD/NDIMCD) // Work per work-item (N-dimension)
+#define KDIMAD ((MDIMCD*NDIMCD)/(MDIMAD)) // Re-shaped tile dimension of matrix A: KDIMAD * MDIMAD
+#define KDIMBD ((MDIMCD*NDIMCD)/(NDIMBD)) // Re-shaped tile dimension of matrix B: KDIMBD * NDIMBD
+#define MWAD (WGD/MDIMAD) // Amount of loads-per-thread for matrix A (M-dimension)
+#define KWAD (WGD/KDIMAD) // Amount of loads-per-thread for matrix A (K-dimension)
+#define KWBD (WGD/KDIMBD) // Amount of loads-per-thread for matrix B (K-dimension)
+#define NWBD (WGD/NDIMBD) // Amount of loads-per-thread for matrix B (N-dimension)
+
+// =================================================================================================
+
+// Data-widths in dimension M
+#if VWMD == 1
+ typedef real realMD;
+#elif VWMD == 2
+ typedef real2 realMD;
+#elif VWMD == 4
+ typedef real4 realMD;
+#elif VWMD == 8
+ typedef real8 realMD;
+#elif VWMD == 16
+ typedef real16 realMD;
+#endif
+
+// Data-widths in dimension N
+#if VWND == 1
+ typedef real realND;
+#elif VWND == 2
+ typedef real2 realND;
+#elif VWND == 4
+ typedef real4 realND;
+#elif VWND == 8
+ typedef real8 realND;
+#elif VWND == 16
+ typedef real16 realND;
+#endif
+
+// =================================================================================================
+
+// Initializes the accumulation registers to zero
+inline void InitAccRegistersDirect(real cpm[NWID][MWID]) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ SetToZero(cpm[ni][mi]);
+ }
+ }
+}
+
+// =================================================================================================
+
+// Performs the actual computation: Cpm += Apm * Bpm
+inline void MultiplyAccumulateDirect(real cpm[NWID][MWID], real apm[MWID], real bpm[NWID]) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ MultiplyAdd(cpm[ni][mi], apm[mi], bpm[ni]);
+ }
+ }
+}
+
+// =================================================================================================
+
+// Loads global off-chip memory into thread-private register files. This function is specific for
+// loading the A input matrix.
+inline void GlobalToPrivateDirectA(const __global real* restrict agms, real apm[MWID],
+ const int a_ld, const int a_offset, const int idm, const int idk,
+ const int a_transpose, const int a_conjugate) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ const int a_index = (a_transpose) ? (idm + mi)*a_ld + idk : idk*a_ld + (idm + mi);
+ apm[mi] = agms[a_index + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(apm[mi]); }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToPrivateDirectB(const __global real* restrict bgms, real bpm[NWID],
+ const int b_ld, const int b_offset, const int idn, const int idk,
+ const int b_transpose, const int b_conjugate) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ const int b_index = (b_transpose) ? (idn + ni)*b_ld + idk : idk*b_ld + (idn + ni);
+ bpm[ni] = bgms[b_index + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(bpm[ni]); }
+ }
+}
+
+// Loads global off-chip memory into thread-private register files. This function is specific for
+// loading the A input matrix. This is the same as above but now includes a bounds check.
+inline void GlobalToPrivateCheckedA(const __global real* restrict agms, real apm[MWID],
+ const int a_ld, const int a_offset, const int idm, const int idk,
+ const int a_transpose, const int a_conjugate,
+ const int kSizeM) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ if (idm + mi < kSizeM) {
+ const int a_index = (a_transpose) ? (idm + mi)*a_ld + idk : idk*a_ld + (idm + mi);
+ apm[mi] = agms[a_index + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(apm[mi]); }
+ }
+ else {
+ SetToZero(apm[mi]);
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToPrivateCheckedB(const __global real* restrict bgms, real bpm[NWID],
+ const int b_ld, const int b_offset, const int idn, const int idk,
+ const int b_transpose, const int b_conjugate,
+ const int kSizeN) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ if (idn + ni < kSizeN) {
+ const int b_index = (b_transpose) ? (idn + ni)*b_ld + idk : idk*b_ld + (idn + ni);
+ bpm[ni] = bgms[b_index + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(bpm[ni]); }
+ }
+ else {
+ SetToZero(bpm[ni]);
+ }
+ }
+}
+
+// =================================================================================================
+
+// Caches on-chip local memory into per-thread private memory (registers). This function is specific
+// for caching the A input matrix.
+inline void LocalToPrivateDirectA(__local real* alm, real apm[MWID], const int kg,
+ const int a_transpose) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ const int mg = mi + get_local_id(0)*MWID;
+ const int index = (a_transpose) ? mg*(WGD + PADA) + kg : kg*(WGD + PADA) + mg;
+ apm[mi] = alm[index];
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void LocalToPrivateDirectB(__local real* blm, real bpm[NWID], const int kg,
+ const int b_transpose) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ const int ng = ni + get_local_id(1)*NWID;
+ const int index = (b_transpose) ? ng*(WGD + PADB) + kg : kg*(WGD + PADB) + ng;
+ bpm[ni] = blm[index];
+ }
+}
+
+// =================================================================================================
+
+// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
+// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
+inline void StoreResultsDirect(__global real* cgm, real cpm[NWID][MWID],
+ const int idm, const int idn,
+ const real alpha, const real beta,
+ const int c_ld, const int c_offset, const int c_transpose) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+
+ // Determines the destination index
+ int c_index = (c_transpose) ? (idm + mi)*c_ld + (idn + ni) : (idn + ni)*c_ld + (idm + mi);
+
+ // The final multiplication with alpha (in case beta == 0)
+ real result;
+ if (IsZero(beta)) {
+ Multiply(result, alpha, cpm[ni][mi]);
+ }
+ // The final multiplication with alpha and the addition with beta*C
+ else {
+ AXPBY(result, alpha, cpm[ni][mi], beta, cgm[c_index + c_offset]);
+ }
+ cgm[c_index + c_offset] = result;
+ }
+ }
+}
+
+// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
+// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
+inline void StoreResultsChecked(__global real* cgm, real cpm[NWID][MWID],
+ const int idm, const int idn, const int kSizeM, const int kSizeN,
+ const real alpha, const real beta,
+ const int c_ld, const int c_offset, const int c_transpose) {
+ #pragma unroll
+ for (int ni=0; ni<NWID; ++ni) {
+ #pragma unroll
+ for (int mi=0; mi<MWID; ++mi) {
+ if ((idm + mi) < kSizeM && (idn + ni) < kSizeN) {
+
+ // Determines the destination index
+ int c_index = (c_transpose) ? (idm + mi)*c_ld + (idn + ni) : (idn + ni)*c_ld + (idm + mi);
+
+ // The final multiplication with alpha (in case beta == 0)
+ real result;
+ if (IsZero(beta)) {
+ Multiply(result, alpha, cpm[ni][mi]);
+ }
+ // The final multiplication with alpha and the addition with beta*C
+ else {
+ AXPBY(result, alpha, cpm[ni][mi], beta, cgm[c_index + c_offset]);
+ }
+ cgm[c_index + c_offset] = result;
+ }
+ }
+ }
+}
+
+// =================================================================================================
+
+// End of the C++11 raw string literal
+)"
+
+// =================================================================================================
diff --git a/src/kernels/level3/xgemm_direct_part2.opencl b/src/kernels/level3/xgemm_direct_part2.opencl
new file mode 100644
index 00000000..d77cbf65
--- /dev/null
+++ b/src/kernels/level3/xgemm_direct_part2.opencl
@@ -0,0 +1,314 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This is part 2 of 3 of the GEMM kernel. See part 1 for more information.
+//
+// =================================================================================================
+
+// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
+// literal). Comment-out this line for syntax-highlighting when developing.
+R"(
+
+// =================================================================================================
+
+// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
+// caching the A input matrix.
+inline void GlobalToLocalDirectA(const __global realMD* restrict agm, __local real* alm,
+ const int a_ld, const int a_offset, const int kwg,
+ const int a_transpose, const int a_conjugate) {
+ #if MDIMCD == MDIMAD
+ const int la0 = get_local_id(0);
+ const int la1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int la0 = tid % MDIMAD;
+ const int la1 = tid / MDIMAD;
+ #endif
+ #pragma unroll
+ for (int mia=0; mia<MWAD/VWMD; ++mia) {
+ #pragma unroll
+ for (int kia=0; kia<KWAD; ++kia) {
+
+ // Computes the indices for the global memory
+ int mg = mia + la0*(MWAD/VWMD);
+ int kg = kia + la1*KWAD;
+ int idm = (a_transpose) ? mg + kwg/VWMD : mg + GetGroupID0()*(WGD/VWMD);
+ int idk = (a_transpose) ? kg + GetGroupID0()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ const realMD avec = agm[idk*(a_ld/VWMD) + idm + a_offset];
+ #if VWMD == 1
+ alm[kg*(WGD + PADA) + mg] = avec;
+ #elif VWMD == 2
+ alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.x;
+ alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.y;
+ #elif VWMD == 4
+ alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.x;
+ alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.y;
+ alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.z;
+ alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.w;
+ #elif VWMD == 8
+ alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.s0;
+ alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.s1;
+ alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.s2;
+ alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.s3;
+ alm[kg*(WGD + PADA) + mg*VWMD + 4] = avec.s4;
+ alm[kg*(WGD + PADA) + mg*VWMD + 5] = avec.s5;
+ alm[kg*(WGD + PADA) + mg*VWMD + 6] = avec.s6;
+ alm[kg*(WGD + PADA) + mg*VWMD + 7] = avec.s7;
+ #elif VWMD == 16
+ alm[kg*(WGD + PADA) + mg*VWMD + 0] = avec.s0;
+ alm[kg*(WGD + PADA) + mg*VWMD + 1] = avec.s1;
+ alm[kg*(WGD + PADA) + mg*VWMD + 2] = avec.s2;
+ alm[kg*(WGD + PADA) + mg*VWMD + 3] = avec.s3;
+ alm[kg*(WGD + PADA) + mg*VWMD + 4] = avec.s4;
+ alm[kg*(WGD + PADA) + mg*VWMD + 5] = avec.s5;
+ alm[kg*(WGD + PADA) + mg*VWMD + 6] = avec.s6;
+ alm[kg*(WGD + PADA) + mg*VWMD + 7] = avec.s7;
+ alm[kg*(WGD + PADA) + mg*VWMD + 8] = avec.s8;
+ alm[kg*(WGD + PADA) + mg*VWMD + 9] = avec.s9;
+ alm[kg*(WGD + PADA) + mg*VWMD + 10] = avec.sA;
+ alm[kg*(WGD + PADA) + mg*VWMD + 11] = avec.sB;
+ alm[kg*(WGD + PADA) + mg*VWMD + 12] = avec.sC;
+ alm[kg*(WGD + PADA) + mg*VWMD + 13] = avec.sD;
+ alm[kg*(WGD + PADA) + mg*VWMD + 14] = avec.sE;
+ alm[kg*(WGD + PADA) + mg*VWMD + 15] = avec.sF;
+ #endif
+ if (a_conjugate) {
+ for (int vm=0; vm<VWMD; ++vm) {
+ COMPLEX_CONJUGATE(alm[kg*(WGD + PADA) + mg*VWMD + vm]);
+ }
+ }
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToLocalDirectB(const __global realND* restrict bgm, __local real* blm,
+ const int b_ld, const int b_offset, const int kwg,
+ const int b_transpose, const int b_conjugate) {
+ #if MDIMCD == NDIMBD
+ const int lb0 = get_local_id(0);
+ const int lb1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int lb0 = tid % NDIMBD;
+ const int lb1 = tid / NDIMBD;
+ #endif
+ #pragma unroll
+ for (int kib=0; kib<KWBD; ++kib) {
+ #pragma unroll
+ for (int nib=0; nib<NWBD/VWND; ++nib) {
+
+ // Computes the indices for the global memory
+ int ng = nib + lb0*(NWBD/VWND);
+ int kg = kib + lb1*KWBD;
+ int idn = (b_transpose) ? ng + kwg/VWND : ng + GetGroupID1()*(WGD/VWND);
+ int idk = (b_transpose) ? kg + GetGroupID1()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ const realND bvec = bgm[idk*(b_ld/VWND) + idn + b_offset];
+ #if VWND == 1
+ blm[kg*(WGD + PADB) + ng] = bvec;
+ #elif VWND == 2
+ blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.x;
+ blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.y;
+ #elif VWND == 4
+ blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.x;
+ blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.y;
+ blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.z;
+ blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.w;
+ #elif VWND == 8
+ blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.s0;
+ blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.s1;
+ blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.s2;
+ blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.s3;
+ blm[kg*(WGD + PADB) + ng*VWND + 4] = bvec.s4;
+ blm[kg*(WGD + PADB) + ng*VWND + 5] = bvec.s5;
+ blm[kg*(WGD + PADB) + ng*VWND + 6] = bvec.s6;
+ blm[kg*(WGD + PADB) + ng*VWND + 7] = bvec.s7;
+ #elif VWND == 16
+ blm[kg*(WGD + PADB) + ng*VWND + 0] = bvec.s0;
+ blm[kg*(WGD + PADB) + ng*VWND + 1] = bvec.s1;
+ blm[kg*(WGD + PADB) + ng*VWND + 2] = bvec.s2;
+ blm[kg*(WGD + PADB) + ng*VWND + 3] = bvec.s3;
+ blm[kg*(WGD + PADB) + ng*VWND + 4] = bvec.s4;
+ blm[kg*(WGD + PADB) + ng*VWND + 5] = bvec.s5;
+ blm[kg*(WGD + PADB) + ng*VWND + 6] = bvec.s6;
+ blm[kg*(WGD + PADB) + ng*VWND + 7] = bvec.s7;
+ blm[kg*(WGD + PADB) + ng*VWND + 8] = bvec.s8;
+ blm[kg*(WGD + PADB) + ng*VWND + 9] = bvec.s9;
+ blm[kg*(WGD + PADB) + ng*VWND + 10] = bvec.sA;
+ blm[kg*(WGD + PADB) + ng*VWND + 11] = bvec.sB;
+ blm[kg*(WGD + PADB) + ng*VWND + 12] = bvec.sC;
+ blm[kg*(WGD + PADB) + ng*VWND + 13] = bvec.sD;
+ blm[kg*(WGD + PADB) + ng*VWND + 14] = bvec.sE;
+ blm[kg*(WGD + PADB) + ng*VWND + 15] = bvec.sF;
+ #endif
+ if (b_conjugate) {
+ for (int vn=0; vn<VWND; ++vn) {
+ COMPLEX_CONJUGATE(blm[kg*(WGD + PADB) + ng*VWND + vn]);
+ }
+ }
+ }
+ }
+}
+
+// =================================================================================================
+
+// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
+// caching the A input matrix. In contrast to the functions above, this function performs doesn't
+// use the vector data-types.
+inline void GlobalToLocalScalarA(const __global real* restrict agms, __local real* alm,
+ const int a_ld, const int a_offset, const int kwg,
+ const int a_transpose, const int a_conjugate) {
+ #if MDIMCD == MDIMAD
+ const int la0 = get_local_id(0);
+ const int la1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int la0 = tid % MDIMAD;
+ const int la1 = tid / MDIMAD;
+ #endif
+ #pragma unroll
+ for (int mia=0; mia<MWAD; ++mia) {
+ #pragma unroll
+ for (int kia=0; kia<KWAD; ++kia) {
+
+ // Computes the indices for the global memory
+ int mg = mia + la0*MWAD;
+ int kg = kia + la1*KWAD;
+ int idm = (a_transpose) ? mg + kwg : mg + GetGroupID0()*WGD;
+ int idk = (a_transpose) ? kg + GetGroupID0()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ real result = agms[idk*a_ld + idm + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(result); }
+ alm[kg*(WGD + PADA) + mg] = result;
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToLocalScalarB(const __global real* restrict bgms, __local real* blm,
+ const int b_ld, const int b_offset, const int kwg,
+ const int b_transpose, const int b_conjugate) {
+ #if MDIMCD == NDIMBD
+ const int lb0 = get_local_id(0);
+ const int lb1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int lb0 = tid % NDIMBD;
+ const int lb1 = tid / NDIMBD;
+ #endif
+ #pragma unroll
+ for (int kib=0; kib<KWBD; ++kib) {
+ #pragma unroll
+ for (int nib=0; nib<NWBD; ++nib) {
+
+ // Computes the indices for the global memory
+ int ng = nib + lb0*NWBD;
+ int kg = kib + lb1*KWBD;
+ int idn = (b_transpose) ? ng + kwg : ng + GetGroupID1()*WGD;
+ int idk = (b_transpose) ? kg + GetGroupID1()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ real result = bgms[idk*b_ld + idn + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(result); }
+ blm[kg*(WGD + PADB) + ng] = result;
+ }
+ }
+}
+
+// =================================================================================================
+
+// Caches global off-chip memory into local (shared) memory on-chip. This function is specific for
+// caching the A input matrix. In contrast to the functions above, this function performs bounds
+// checks and doesn't use the vector data-types.
+inline void GlobalToLocalCheckedA(const __global real* restrict agms, __local real* alm,
+ const int a_ld, const int a_offset, const int kwg,
+ const int a_transpose, const int a_conjugate,
+ const int kSizeM, const int kSizeK) {
+ #if MDIMCD == MDIMAD
+ const int la0 = get_local_id(0);
+ const int la1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int la0 = tid % MDIMAD;
+ const int la1 = tid / MDIMAD;
+ #endif
+ #pragma unroll
+ for (int mia=0; mia<MWAD; ++mia) {
+ #pragma unroll
+ for (int kia=0; kia<KWAD; ++kia) {
+
+ // Computes the indices for the global memory
+ int mg = mia + la0*MWAD;
+ int kg = kia + la1*KWAD;
+ int idm = (a_transpose) ? mg + kwg : mg + GetGroupID0()*WGD;
+ int idk = (a_transpose) ? kg + GetGroupID0()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ int condition = (a_transpose) ? idm < kSizeK : idm < kSizeM;
+ if (condition) {
+ real result = agms[idk*a_ld + idm + a_offset];
+ if (a_conjugate) { COMPLEX_CONJUGATE(result); }
+ alm[kg*(WGD + PADA) + mg] = result;
+ }
+ else {
+ SetToZero(alm[kg*(WGD + PADA) + mg]);
+ }
+ }
+ }
+}
+
+// Same as above, but now for the B input matrix
+inline void GlobalToLocalCheckedB(const __global real* restrict bgms, __local real* blm,
+ const int b_ld, const int b_offset, const int kwg,
+ const int b_transpose, const int b_conjugate,
+ const int kSizeN, const int kSizeK) {
+ #if MDIMCD == NDIMBD
+ const int lb0 = get_local_id(0);
+ const int lb1 = get_local_id(1);
+ #else
+ const int tid = get_local_id(0) + MDIMCD*get_local_id(1);
+ const int lb0 = tid % NDIMBD;
+ const int lb1 = tid / NDIMBD;
+ #endif
+ #pragma unroll
+ for (int kib=0; kib<KWBD; ++kib) {
+ #pragma unroll
+ for (int nib=0; nib<NWBD; ++nib) {
+
+ // Computes the indices for the global memory
+ int ng = nib + lb0*NWBD;
+ int kg = kib + lb1*KWBD;
+ int idn = (b_transpose) ? ng + kwg : ng + GetGroupID1()*WGD;
+ int idk = (b_transpose) ? kg + GetGroupID1()*WGD : kg + kwg;
+
+ // Loads the data from global memory into the local memory
+ int condition = (b_transpose) ? idn < kSizeK : idn < kSizeN;
+ if (condition) {
+ real result = bgms[idk*b_ld + idn + b_offset];
+ if (b_conjugate) { COMPLEX_CONJUGATE(result); }
+ blm[kg*(WGD + PADB) + ng] = result;
+ }
+ else {
+ SetToZero(blm[kg*(WGD + PADB) + ng]);
+ }
+ }
+ }
+}
+
+// =================================================================================================
+
+// End of the C++11 raw string literal
+)"
+
+// =================================================================================================
diff --git a/src/kernels/level3/xgemm_direct_part3.opencl b/src/kernels/level3/xgemm_direct_part3.opencl
new file mode 100644
index 00000000..a9350e00
--- /dev/null
+++ b/src/kernels/level3/xgemm_direct_part3.opencl
@@ -0,0 +1,214 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This is part 3 of 3 of the GEMM kernel. See part 1 for more information.
+//
+// =================================================================================================
+
+// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
+// literal). Comment-out this line for syntax-highlighting when developing.
+R"(
+
+// =================================================================================================
+
+// Main body of the kernel. This is the direct version without pre/post processing and restrictions.
+inline void XgemmDirect(const int kSizeM, const int kSizeN, const int kSizeK,
+ const real_arg arg_alpha,
+ const real_arg arg_beta,
+ const __global realMD* restrict agm, const int a_offset, const int a_ld,
+ const __global realND* restrict bgm, const int b_offset, const int b_ld,
+ __global real* cgm, const int c_offset, const int c_ld,
+ __local real* alm, __local real* blm,
+ const int a_transpose, const int b_transpose, const int c_transpose,
+ const int a_conjugate, const int b_conjugate) {
+ const real alpha = GetRealArg(arg_alpha);
+ const real beta = GetRealArg(arg_beta);
+
+ // Extra pointers to scalar versions of global memory
+ const __global real* restrict agms = (const __global real* restrict) agm;
+ const __global real* restrict bgms = (const __global real* restrict) bgm;
+
+ // Allocates workitem-private memory (registers)
+ real apm[MWID];
+ real bpm[NWID];
+ real cpm[NWID][MWID];
+
+ // Initializes the accumulation registers
+ InitAccRegistersDirect(cpm);
+
+ // The faster version of GEMM is not allowed on the (incomplete) borders. Therefore, this section
+ // processes only the main parts: output blocks of WGD by WGD.
+ const int idm = get_local_id(0) * MWID + GetGroupID0() * WGD;
+ const int idn = get_local_id(1) * NWID + GetGroupID1() * WGD;
+ if ((idm < (kSizeM/WGD)*WGD) && (idn < (kSizeN/WGD)*WGD)) {
+
+ // Loops over all complete workgroup tiles (K-dimension)
+ int kwg = 0;
+ for (; kwg < (kSizeK/WGD) * WGD; kwg+=WGD) {
+
+ // Loads data: off-chip --> local (matrix A and B)
+ if (a_ld % VWMD == 0) {
+ GlobalToLocalDirectA(agm, alm, a_ld, a_offset, kwg, a_transpose, a_conjugate);
+ }
+ else {
+ GlobalToLocalScalarA(agms, alm, a_ld, a_offset, kwg, a_transpose, a_conjugate);
+ }
+ if (b_ld % VWND == 0) {
+ GlobalToLocalDirectB(bgm, blm, b_ld, b_offset, kwg, b_transpose, b_conjugate);
+ }
+ else {
+ GlobalToLocalScalarB(bgms, blm, b_ld, b_offset, kwg, b_transpose, b_conjugate);
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ // Loops over all workitem tiles, unrolled by a factor KWID
+ for (int pwi=0; pwi<WGD; pwi+=KWID) {
+ #pragma unroll
+ for (int pit=0; pit<KWID; ++pit) {
+ int kg = pwi + pit;
+
+ // Loads data: local --> private (matrix A and B)
+ LocalToPrivateDirectA(alm, apm, kg, a_transpose);
+ LocalToPrivateDirectB(blm, bpm, kg, b_transpose);
+
+ // Performs the accumulation (Cpm += Apm * Bpm)
+ MultiplyAccumulateDirect(cpm, apm, bpm);
+ }
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+
+ // Loop over the remaining part (incomplete tile in K-dimension)
+ for (; kwg < kSizeK; ++kwg) {
+
+ // Loads data: off-chip --> private (matrix A and B)
+ GlobalToPrivateDirectA(agms, apm, a_ld, a_offset, idm, kwg, a_transpose, a_conjugate);
+ GlobalToPrivateDirectB(bgms, bpm, b_ld, b_offset, idn, kwg, b_transpose, b_conjugate);
+
+ // Performs the accumulation (Cpm += Apm * Bpm)
+ MultiplyAccumulateDirect(cpm, apm, bpm);
+ }
+
+ // Stores a tile of results and performs the multiplication with alpha and beta
+ StoreResultsDirect(cgm, cpm, idm, idn, alpha, beta, c_ld, c_offset, c_transpose);
+ }
+
+ // Simple but slower version for the parts on the edge (incomplete tiles in M and N-dimensions)
+ else {
+
+ // Loops over all complete workgroup tiles (K-dimension)
+ int kwg = 0;
+ for (; kwg < (kSizeK/WGD) * WGD; kwg+=WGD) {
+
+ // Loads data: off-chip --> local (matrix A and B)
+ GlobalToLocalCheckedA(agms, alm, a_ld, a_offset, kwg, a_transpose, a_conjugate, kSizeM, kSizeK);
+ GlobalToLocalCheckedB(bgms, blm, b_ld, b_offset, kwg, b_transpose, b_conjugate, kSizeN, kSizeK);
+ barrier(CLK_LOCAL_MEM_FENCE);
+
+ // Loops over all workitem tiles, unrolled by a factor KWID
+ for (int pwi=0; pwi<WGD; pwi+=KWID) {
+ #pragma unroll
+ for (int pit=0; pit<KWID; ++pit) {
+ int kg = pwi + pit;
+
+ // Loads data: local --> private (matrix A and B)
+ LocalToPrivateDirectA(alm, apm, kg, a_transpose);
+ LocalToPrivateDirectB(blm, bpm, kg, b_transpose);
+
+ // Performs the accumulation (Cpm += Apm * Bpm)
+ MultiplyAccumulateDirect(cpm, apm, bpm);
+ }
+ }
+ barrier(CLK_LOCAL_MEM_FENCE);
+ }
+
+ // Loop over the remaining part (incomplete tile in K-dimension)
+ for (; kwg < kSizeK; ++kwg) {
+
+ // Loads data: off-chip --> private (matrix A and B)
+ GlobalToPrivateCheckedA(agms, apm, a_ld, a_offset, idm, kwg, a_transpose, a_conjugate, kSizeM);
+ GlobalToPrivateCheckedB(bgms, bpm, b_ld, b_offset, idn, kwg, b_transpose, b_conjugate, kSizeN);
+
+ // Performs the accumulation (Cpm += Apm * Bpm)
+ MultiplyAccumulateDirect(cpm, apm, bpm);
+ }
+
+ // Stores a tile of results and performs the multiplication with alpha and beta
+ StoreResultsChecked(cgm, cpm, idm, idn, kSizeM, kSizeN, alpha, beta, c_ld, c_offset, c_transpose);
+ }
+}
+
+// =================================================================================================
+
+// Direct version of the GEMM kernel with [A, B] = [non-transposed, non-transposed]
+__attribute__((reqd_work_group_size(MDIMCD, NDIMCD, 1)))
+__kernel void XgemmDirectNN(const int kSizeM, const int kSizeN, const int kSizeK,
+ const real_arg arg_alpha, const real_arg arg_beta,
+ const __global realMD* restrict agm, const int a_offset, const int a_ld,
+ const __global realND* restrict bgm, const int b_offset, const int b_ld,
+ __global real* cgm, const int c_offset, const int c_ld,
+ const int c_transpose, const int a_conjugate, const int b_conjugate) {
+ __local real alm[WGD * (WGD + PADA)];
+ __local real blm[WGD * (WGD + PADB)];
+ XgemmDirect(kSizeM, kSizeN, kSizeK, arg_alpha, arg_beta,
+ agm, a_offset, a_ld, bgm, b_offset, b_ld, cgm, c_offset, c_ld,
+ alm, blm, 0, 0, c_transpose, a_conjugate, b_conjugate);
+}
+
+// Direct version of the GEMM kernel with [A, B] = [non-transposed, transposed]
+__attribute__((reqd_work_group_size(MDIMCD, NDIMCD, 1)))
+__kernel void XgemmDirectNT(const int kSizeM, const int kSizeN, const int kSizeK,
+ const real_arg arg_alpha, const real_arg arg_beta,
+ const __global realMD* restrict agm, const int a_offset, const int a_ld,
+ const __global realND* restrict bgm, const int b_offset, const int b_ld,
+ __global real* cgm, const int c_offset, const int c_ld,
+ const int c_transpose, const int a_conjugate, const int b_conjugate) {
+ __local real alm[WGD * (WGD + PADA)];
+ __local real blm[WGD * (WGD + PADB)];
+ XgemmDirect(kSizeM, kSizeN, kSizeK, arg_alpha, arg_beta,
+ agm, a_offset, a_ld, bgm, b_offset, b_ld, cgm, c_offset, c_ld,
+ alm, blm, 0, 1, c_transpose, a_conjugate, b_conjugate);
+}
+
+// Direct version of the GEMM kernel with [A, B] = [transposed, non-transposed]
+__attribute__((reqd_work_group_size(MDIMCD, NDIMCD, 1)))
+__kernel void XgemmDirectTN(const int kSizeM, const int kSizeN, const int kSizeK,
+ const real_arg arg_alpha, const real_arg arg_beta,
+ const __global realMD* restrict agm, const int a_offset, const int a_ld,
+ const __global realND* restrict bgm, const int b_offset, const int b_ld,
+ __global real* cgm, const int c_offset, const int c_ld,
+ const int c_transpose, const int a_conjugate, const int b_conjugate) {
+ __local real alm[WGD * (WGD + PADA)];
+ __local real blm[WGD * (WGD + PADB)];
+ XgemmDirect(kSizeM, kSizeN, kSizeK, arg_alpha, arg_beta,
+ agm, a_offset, a_ld, bgm, b_offset, b_ld, cgm, c_offset, c_ld,
+ alm, blm, 1, 0, c_transpose, a_conjugate, b_conjugate);
+}
+
+// Direct version of the GEMM kernel with [A, B] = [transposed, transposed]
+__attribute__((reqd_work_group_size(MDIMCD, NDIMCD, 1)))
+__kernel void XgemmDirectTT(const int kSizeM, const int kSizeN, const int kSizeK,
+ const real_arg arg_alpha, const real_arg arg_beta,
+ const __global realMD* restrict agm, const int a_offset, const int a_ld,
+ const __global realND* restrict bgm, const int b_offset, const int b_ld,
+ __global real* cgm, const int c_offset, const int c_ld,
+ const int c_transpose, const int a_conjugate, const int b_conjugate) {
+ __local real alm[WGD * (WGD + PADA)];
+ __local real blm[WGD * (WGD + PADB)];
+ XgemmDirect(kSizeM, kSizeN, kSizeK, arg_alpha, arg_beta,
+ agm, a_offset, a_ld, bgm, b_offset, b_ld, cgm, c_offset, c_ld,
+ alm, blm, 1, 1, c_transpose, a_conjugate, b_conjugate);
+}
+
+// =================================================================================================
+
+// End of the C++11 raw string literal
+)"
+
+// =================================================================================================