summaryrefslogtreecommitdiff
path: root/src/routines/level2/xgemv.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/routines/level2/xgemv.cpp')
-rw-r--r--src/routines/level2/xgemv.cpp181
1 files changed, 181 insertions, 0 deletions
diff --git a/src/routines/level2/xgemv.cpp b/src/routines/level2/xgemv.cpp
new file mode 100644
index 00000000..21fb397c
--- /dev/null
+++ b/src/routines/level2/xgemv.cpp
@@ -0,0 +1,181 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This file implements the Xgemv class (see the header for information about the class).
+//
+// =================================================================================================
+
+#include "routines/level2/xgemv.hpp"
+
+#include <string>
+#include <vector>
+
+namespace clblast {
+// =================================================================================================
+
+// Constructor: forwards to base class constructor
+template <typename T>
+Xgemv<T>::Xgemv(Queue &queue, EventPointer event, const std::string &name):
+ Routine(queue, event, name, {"Pad", "Xgemv"}, PrecisionValue<T>()) {
+ source_string_ =
+ #include "../../kernels/level2/xgemv.opencl"
+ #include "../../kernels/level2/xgemv_fast.opencl"
+ ;
+}
+
+// =================================================================================================
+
+// The main routine
+template <typename T>
+StatusCode Xgemv<T>::DoGemv(const Layout layout, const Transpose a_transpose,
+ const size_t m, const size_t n,
+ const T alpha,
+ const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
+ const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
+ const T beta,
+ const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc) {
+
+ // Performs the matrix-vector multiplication
+ return MatVec(layout, a_transpose,
+ m, n, alpha,
+ a_buffer, a_offset, a_ld,
+ x_buffer, x_offset, x_inc, beta,
+ y_buffer, y_offset, y_inc,
+ true, true,
+ 0, false, 0, 0); // N/A for this routine
+}
+
+// =================================================================================================
+
+// The generic implementation, also suited for other (non general) matrix-vector multiplications
+template <typename T>
+StatusCode Xgemv<T>::MatVec(const Layout layout, const Transpose a_transpose,
+ const size_t m, const size_t n,
+ const T alpha,
+ const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
+ const Buffer<T> &x_buffer, const size_t x_offset, const size_t x_inc,
+ const T beta,
+ const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc,
+ bool fast_kernel, bool fast_kernel_rot,
+ const size_t parameter, const bool packed,
+ const size_t kl, const size_t ku) {
+
+ // Makes sure all dimensions are larger than zero
+ if (m == 0 || n == 0) { return StatusCode::kInvalidDimension; }
+
+ // Computes whether or not the matrix has an alternative layout (row or column-major).
+ auto a_altlayout = (layout == Layout::kRowMajor);
+ auto a_one = (a_altlayout) ? n : m;
+ auto a_two = (a_altlayout) ? m : n;
+
+ // Swap m and n if the matrix is transposed
+ auto a_transposed = (a_transpose != Transpose::kNo);
+ auto m_real = (a_transposed) ? n : m;
+ auto n_real = (a_transposed) ? m : n;
+
+ // Special adjustments for banded matrices
+ if (kl != 0 || ku != 0) {
+ a_one = kl+ku+1;
+ }
+
+ // Determines whether the kernel needs to perform rotated access ('^' is the XOR operator)
+ auto a_rotated = a_transposed ^ a_altlayout;
+
+ // In case of complex data-types, the transpose can also become a conjugate transpose
+ auto a_conjugate = (a_transpose == Transpose::kConjugate);
+
+ // Tests the matrix and the vectors for validity
+ auto status = StatusCode::kSuccess;
+ if (packed) { status = TestMatrixAP(n, a_buffer, a_offset); }
+ else { status = TestMatrixA(a_one, a_two, a_buffer, a_offset, a_ld); }
+ if (ErrorIn(status)) { return status; }
+ status = TestVectorX(n_real, x_buffer, x_offset, x_inc);
+ if (ErrorIn(status)) { return status; }
+ status = TestVectorY(m_real, y_buffer, y_offset, y_inc);
+ if (ErrorIn(status)) { return status; }
+
+ // Determines whether or not the fast-version can be used
+ fast_kernel = fast_kernel && (a_offset == 0) && (a_rotated == 0) && (a_conjugate == 0) &&
+ IsMultiple(m, db_["WGS2"]*db_["WPT2"]) &&
+ IsMultiple(n, db_["WGS2"]) &&
+ IsMultiple(a_ld, db_["VW2"]);
+ fast_kernel_rot = fast_kernel_rot && (a_offset == 0) && (a_rotated == 1) && (a_conjugate == 0) &&
+ IsMultiple(m, db_["WGS3"]*db_["WPT3"]) &&
+ IsMultiple(n, db_["WGS3"]) &&
+ IsMultiple(a_ld, db_["VW3"]);
+
+ // If possible, run the fast-version (rotated or non-rotated) of the kernel
+ auto kernel_name = "Xgemv";
+ auto m_ceiled = Ceil(m_real, db_["WGS1"]*db_["WPT1"]);
+ auto global_size = m_ceiled / db_["WPT1"];
+ auto local_size = db_["WGS1"];
+ if (fast_kernel) {
+ kernel_name = "XgemvFast";
+ global_size = m_real / db_["WPT2"];
+ local_size = db_["WGS2"];
+ }
+ if (fast_kernel_rot) {
+ kernel_name = "XgemvFastRot";
+ global_size = m_real / db_["WPT3"];
+ local_size = db_["WGS3"];
+ }
+
+ // Upload the scalar arguments as constant buffers to the device (needed for half-precision)
+ auto alpha_buffer = Buffer<T>(context_, 1);
+ auto beta_buffer = Buffer<T>(context_, 1);
+ alpha_buffer.Write(queue_, 1, &alpha);
+ beta_buffer.Write(queue_, 1, &beta);
+
+ // Retrieves the Xgemv kernel from the compiled binary
+ try {
+ const auto program = GetProgramFromCache(context_, PrecisionValue<T>(), routine_name_);
+ auto kernel = Kernel(program, kernel_name);
+
+ // Sets the kernel arguments
+ kernel.SetArgument(0, static_cast<int>(m_real));
+ kernel.SetArgument(1, static_cast<int>(n_real));
+ kernel.SetArgument(2, alpha_buffer());
+ kernel.SetArgument(3, beta_buffer());
+ kernel.SetArgument(4, static_cast<int>(a_rotated));
+ kernel.SetArgument(5, a_buffer());
+ kernel.SetArgument(6, static_cast<int>(a_offset));
+ kernel.SetArgument(7, static_cast<int>(a_ld));
+ kernel.SetArgument(8, x_buffer());
+ kernel.SetArgument(9, static_cast<int>(x_offset));
+ kernel.SetArgument(10, static_cast<int>(x_inc));
+ kernel.SetArgument(11, y_buffer());
+ kernel.SetArgument(12, static_cast<int>(y_offset));
+ kernel.SetArgument(13, static_cast<int>(y_inc));
+ kernel.SetArgument(14, static_cast<int>(a_conjugate));
+ kernel.SetArgument(15, static_cast<int>(parameter)); // extra parameter used for symm/herm
+ kernel.SetArgument(16, static_cast<int>(kl)); // only used for banded matrices
+ kernel.SetArgument(17, static_cast<int>(ku)); // only used for banded matrices
+
+ // Launches the kernel
+ auto global = std::vector<size_t>{global_size};
+ auto local = std::vector<size_t>{local_size};
+ status = RunKernel(kernel, queue_, device_, global, local, event_);
+ if (ErrorIn(status)) { return status; }
+
+ // Succesfully finished the computation
+ return StatusCode::kSuccess;
+ } catch (...) { return StatusCode::kInvalidKernel; }
+}
+
+// =================================================================================================
+
+// Compiles the templated class
+template class Xgemv<half>;
+template class Xgemv<float>;
+template class Xgemv<double>;
+template class Xgemv<float2>;
+template class Xgemv<double2>;
+
+// =================================================================================================
+} // namespace clblast