summaryrefslogtreecommitdiff
path: root/src/routines/level2/xhemv.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/routines/level2/xhemv.cc')
-rw-r--r--src/routines/level2/xhemv.cc62
1 files changed, 13 insertions, 49 deletions
diff --git a/src/routines/level2/xhemv.cc b/src/routines/level2/xhemv.cc
index 2d92e45f..917bf9b6 100644
--- a/src/routines/level2/xhemv.cc
+++ b/src/routines/level2/xhemv.cc
@@ -37,57 +37,21 @@ StatusCode Xhemv<T>::DoHemv(const Layout layout, const Triangle triangle,
const T beta,
const Buffer<T> &y_buffer, const size_t y_offset, const size_t y_inc) {
- // Makes sure all dimensions are larger than zero
- if (n == 0) { return StatusCode::kInvalidDimension; }
-
- // Checks for validity of the squared A matrix
- auto status = TestMatrixA(n, n, a_buffer, a_offset, a_ld, sizeof(T));
- if (ErrorIn(status)) { return status; }
-
- // Determines which kernel to run based on the layout (the Xgemv kernel assumes column-major as
- // default) and on whether we are dealing with an upper or lower triangle of the hermitian matrix
- bool is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
+ // The data is either in the upper or lower triangle
+ bool reversed = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) ||
(triangle == Triangle::kLower && layout == Layout::kRowMajor));
- auto kernel_name = (is_upper) ? "HermUpperToSquared" : "HermLowerToSquared";
-
- // Temporary buffer for a copy of the hermitian matrix
- try {
- auto temp_herm = Buffer<T>(context_, n*n);
-
- // Creates a general matrix from the hermitian matrix to be able to run the regular Xgemv
- // routine afterwards
- try {
- auto& program = GetProgramFromCache();
- auto kernel = Kernel(program, kernel_name);
-
- // Sets the arguments for the hermitian-to-squared kernel
- kernel.SetArgument(0, static_cast<int>(n));
- kernel.SetArgument(1, static_cast<int>(a_ld));
- kernel.SetArgument(2, static_cast<int>(a_offset));
- kernel.SetArgument(3, a_buffer());
- kernel.SetArgument(4, static_cast<int>(n));
- kernel.SetArgument(5, static_cast<int>(n));
- kernel.SetArgument(6, static_cast<int>(0));
- kernel.SetArgument(7, temp_herm());
-
- // Uses the common padding kernel's thread configuration. This is allowed, since the
- // hermitian-to-squared kernel uses the same parameters.
- auto global = std::vector<size_t>{Ceil(CeilDiv(n, db_["PAD_WPTX"]), db_["PAD_DIMX"]),
- Ceil(CeilDiv(n, db_["PAD_WPTY"]), db_["PAD_DIMY"])};
- auto local = std::vector<size_t>{db_["PAD_DIMX"], db_["PAD_DIMY"]};
- status = RunKernel(kernel, global, local);
- if (ErrorIn(status)) { return status; }
-
- // Runs the regular Xgemv code
- status = DoGemv(layout, Transpose::kNo, n, n, alpha,
- temp_herm, 0, n,
- x_buffer, x_offset, x_inc, beta,
- y_buffer, y_offset, y_inc);
- // Return the status of the Xgemv routine
- return status;
- } catch (...) { return StatusCode::kInvalidKernel; }
- } catch (...) { return StatusCode::kTempBufferAllocFailure; }
+ // Runs the generic matrix-vector multiplication, disabling the use of fast vectorized kernels.
+ // The specific hermitian matrix-accesses are implemented in the kernel guarded by the
+ // ROUTINE_HEMV define.
+ bool fast_kernels = false;
+ return MatVec(layout, Transpose::kNo,
+ n, n, alpha,
+ a_buffer, a_offset, a_ld,
+ x_buffer, x_offset, x_inc, beta,
+ y_buffer, y_offset, y_inc,
+ fast_kernels, fast_kernels,
+ reversed, 0, 0);
}
// =================================================================================================