summaryrefslogtreecommitdiff
path: root/src/routines/level3/xher2k.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/routines/level3/xher2k.cpp')
-rw-r--r--src/routines/level3/xher2k.cpp241
1 files changed, 241 insertions, 0 deletions
diff --git a/src/routines/level3/xher2k.cpp b/src/routines/level3/xher2k.cpp
new file mode 100644
index 00000000..bd7a053e
--- /dev/null
+++ b/src/routines/level3/xher2k.cpp
@@ -0,0 +1,241 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This file implements the Xher2k class (see the header for information about the class).
+//
+// =================================================================================================
+
+#include "routines/level3/xher2k.hpp"
+
+#include <string>
+#include <vector>
+
+namespace clblast {
+// =================================================================================================
+
+// Constructor: forwards to base class constructor
+template <typename T, typename U>
+Xher2k<T,U>::Xher2k(Queue &queue, EventPointer event, const std::string &name):
+ Routine(queue, event, name, {"Copy","Pad","Transpose","Padtranspose","Xgemm"}, PrecisionValue<T>()) {
+ source_string_ =
+ #include "../../kernels/level3/level3.opencl"
+ #include "../../kernels/level3/copy_fast.opencl"
+ #include "../../kernels/level3/copy_pad.opencl"
+ #include "../../kernels/level3/transpose_fast.opencl"
+ #include "../../kernels/level3/transpose_pad.opencl"
+ #include "../../kernels/level3/xgemm_part1.opencl"
+ #include "../../kernels/level3/xgemm_part2.opencl"
+ ;
+}
+
+// =================================================================================================
+
+// The main routine
+template <typename T, typename U>
+StatusCode Xher2k<T,U>::DoHer2k(const Layout layout, const Triangle triangle, const Transpose ab_transpose,
+ const size_t n, const size_t k,
+ const T alpha,
+ const Buffer<T> &a_buffer, const size_t a_offset, const size_t a_ld,
+ const Buffer<T> &b_buffer, const size_t b_offset, const size_t b_ld,
+ const U beta,
+ const Buffer<T> &c_buffer, const size_t c_offset, const size_t c_ld) {
+
+ // Makes sure all dimensions are larger than zero
+ if ((n == 0) || (k == 0) ) { return StatusCode::kInvalidDimension; }
+
+ // Determines whether to apply the conjugate transpose to matrix B (argument: no transpose) or
+ // to matrix A (argument: conjugate transpose)
+ auto ab_conjugate = (ab_transpose != Transpose::kNo);
+
+ // Computes whether or not the matrices are transposed in memory. This is based on their layout
+ // (row or column-major) and whether or not they are requested to be pre-transposed.
+ auto ab_rotated = (layout == Layout::kColMajor && ab_conjugate) ||
+ (layout == Layout::kRowMajor && !ab_conjugate);
+ auto c_rotated = (layout == Layout::kRowMajor);
+
+ // Computes the first and second dimensions of the A and B matrices taking the layout into account
+ auto ab_one = (ab_rotated) ? k : n;
+ auto ab_two = (ab_rotated) ? n : k;
+
+ // Tests the matrices (A, B, C) for validity, first from a perspective of the OpenCL buffers and
+ // their sizes, and then from a perspective of parameter values (e.g. n, k). Tests whether the
+ // OpenCL buffers are valid and non-zero and whether the OpenCL buffers have sufficient storage
+ // space. Also tests that the leading dimensions of:
+ // matrix A cannot be less than N when rotated, or less than K when not-rotated
+ // matrix B cannot be less than N when rotated, or less than K when not-rotated
+ // matrix C cannot be less than N
+ auto status = TestMatrixA(ab_one, ab_two, a_buffer, a_offset, a_ld);
+ if (ErrorIn(status)) { return status; }
+ status = TestMatrixB(ab_one, ab_two, b_buffer, b_offset, b_ld);
+ if (ErrorIn(status)) { return status; }
+ status = TestMatrixC(n, n, c_buffer, c_offset, c_ld);
+ if (ErrorIn(status)) { return status; }
+
+ // Calculates the ceiled versions of n and k
+ auto n_ceiled = Ceil(n, db_["NWG"]);
+ auto k_ceiled = Ceil(k, db_["KWG"]);
+
+ // Decides which kernel to run: the upper-triangular or lower-triangular version
+ auto kernel_name = (triangle == Triangle::kUpper) ? "XgemmUpper" : "XgemmLower";
+
+ // The padded/transposed input/output matrices: if memory allocation fails, throw an exception
+ try {
+
+ // Loads the program from the database
+ const auto program = GetProgramFromCache(context_, PrecisionValue<T>(), routine_name_);
+
+ // Determines whether or not temporary matrices are needed
+ auto a1_no_temp = ab_one == n_ceiled && ab_two == k_ceiled && a_ld == n_ceiled && a_offset == 0 &&
+ ab_rotated == false && ab_conjugate == false;
+ auto a2_no_temp = ab_one == n_ceiled && ab_two == k_ceiled && a_ld == n_ceiled && a_offset == 0 &&
+ ab_rotated == false && ab_conjugate == true;
+ auto b1_no_temp = ab_one == n_ceiled && ab_two == k_ceiled && b_ld == n_ceiled && b_offset == 0 &&
+ ab_rotated == false && ab_conjugate == false;
+ auto b2_no_temp = ab_one == n_ceiled && ab_two == k_ceiled && b_ld == n_ceiled && b_offset == 0 &&
+ ab_rotated == false && ab_conjugate == true;
+
+ // Creates the temporary matrices
+ auto a1_temp = (a1_no_temp) ? a_buffer : Buffer<T>(context_, k_ceiled*n_ceiled);
+ auto a2_temp = (a2_no_temp) ? a_buffer : Buffer<T>(context_, k_ceiled*n_ceiled);
+ auto b1_temp = (b1_no_temp) ? b_buffer : Buffer<T>(context_, k_ceiled*n_ceiled);
+ auto b2_temp = (b2_no_temp) ? b_buffer : Buffer<T>(context_, k_ceiled*n_ceiled);
+ auto c_temp = Buffer<T>(context_, n_ceiled*n_ceiled);
+
+ // Upload the scalar arguments as constant buffers to the device (needed for half-precision)
+ auto complex_beta = T{beta, static_cast<U>(0.0)};
+ auto alpha_buffer = Buffer<T>(context_, 1);
+ auto beta_buffer = Buffer<T>(context_, 1);
+ alpha_buffer.Write(queue_, 1, &alpha);
+ beta_buffer.Write(queue_, 1, &complex_beta);
+
+ // Events of all kernels (including pre/post processing kernels)
+ auto eventWaitList = std::vector<Event>();
+ auto emptyEventList = std::vector<Event>();
+
+ // Runs the pre-processing kernels. This transposes the matrices A and B, but also pads zeros to
+ // to fill it up until it reaches a certain multiple of size (kernel parameter dependent). In
+ // case nothing has to be done, these kernels can be skipped.
+ if (!a1_no_temp) {
+ auto eventProcessA1 = Event();
+ status = PadCopyTransposeMatrix(queue_, device_, context_, db_, eventProcessA1.pointer(), emptyEventList,
+ ab_one, ab_two, a_ld, a_offset, a_buffer,
+ n_ceiled, k_ceiled, n_ceiled, 0, a1_temp,
+ ConstantOne<T>(), program,
+ true, ab_rotated, ab_conjugate);
+ eventWaitList.push_back(eventProcessA1);
+ if (ErrorIn(status)) { return status; }
+ }
+ if (!a2_no_temp) {
+ auto eventProcessA2 = Event();
+ status = PadCopyTransposeMatrix(queue_, device_, context_, db_, eventProcessA2.pointer(), emptyEventList,
+ ab_one, ab_two, a_ld, a_offset, a_buffer,
+ n_ceiled, k_ceiled, n_ceiled, 0, a2_temp,
+ ConstantOne<T>(), program,
+ true, ab_rotated, !ab_conjugate);
+ eventWaitList.push_back(eventProcessA2);
+ if (ErrorIn(status)) { return status; }
+ }
+ if (!b1_no_temp) {
+ auto eventProcessB1 = Event();
+ status = PadCopyTransposeMatrix(queue_, device_, context_, db_, eventProcessB1.pointer(), emptyEventList,
+ ab_one, ab_two, b_ld, b_offset, b_buffer,
+ n_ceiled, k_ceiled, n_ceiled, 0, b1_temp,
+ ConstantOne<T>(), program,
+ true, ab_rotated, ab_conjugate);
+ eventWaitList.push_back(eventProcessB1);
+ if (ErrorIn(status)) { return status; }
+ }
+ if (!b2_no_temp) {
+ auto eventProcessB2 = Event();
+ status = PadCopyTransposeMatrix(queue_, device_, context_, db_, eventProcessB2.pointer(), emptyEventList,
+ ab_one, ab_two, b_ld, b_offset, b_buffer,
+ n_ceiled, k_ceiled, n_ceiled, 0, b2_temp,
+ ConstantOne<T>(), program,
+ true, ab_rotated, !ab_conjugate);
+ eventWaitList.push_back(eventProcessB2);
+ if (ErrorIn(status)) { return status; }
+ }
+
+ // Furthermore, also creates a (possibly padded) copy of matrix C, since it is not allowed to
+ // modify the other triangle.
+ auto eventProcessC = Event();
+ status = PadCopyTransposeMatrix(queue_, device_, context_, db_, eventProcessC.pointer(), emptyEventList,
+ n, n, c_ld, c_offset, c_buffer,
+ n_ceiled, n_ceiled, n_ceiled, 0, c_temp,
+ ConstantOne<T>(), program,
+ true, c_rotated, false);
+ eventWaitList.push_back(eventProcessC);
+ if (ErrorIn(status)) { return status; }
+
+ // Retrieves the XgemmUpper or XgemmLower kernel from the compiled binary
+ try {
+ auto kernel = Kernel(program, kernel_name);
+
+ // Sets the kernel arguments
+ kernel.SetArgument(0, static_cast<int>(n_ceiled));
+ kernel.SetArgument(1, static_cast<int>(k_ceiled));
+ kernel.SetArgument(2, alpha_buffer());
+ kernel.SetArgument(3, beta_buffer());
+ kernel.SetArgument(4, a1_temp());
+ kernel.SetArgument(5, b2_temp());
+ kernel.SetArgument(6, c_temp());
+
+ // Computes the global and local thread sizes
+ auto global = std::vector<size_t>{
+ (n_ceiled * db_["MDIMC"]) / db_["MWG"],
+ (n_ceiled * db_["NDIMC"]) / db_["NWG"]
+ };
+ auto local = std::vector<size_t>{db_["MDIMC"], db_["NDIMC"]};
+
+ // Launches the kernel
+ auto eventKernel1 = Event();
+ status = RunKernel(kernel, queue_, device_, global, local, eventKernel1.pointer(), eventWaitList);
+ if (ErrorIn(status)) { return status; }
+ eventWaitList.push_back(eventKernel1);
+
+ // Swaps the arguments for matrices A and B, sets 'beta' to 1, and conjugate alpha
+ auto conjugate_alpha = T{alpha.real(), -alpha.imag()};
+ auto complex_one = T{static_cast<U>(1.0), static_cast<U>(0.0)};
+ alpha_buffer.Write(queue_, 1, &conjugate_alpha);
+ beta_buffer.Write(queue_, 1, &complex_one);
+ kernel.SetArgument(2, alpha_buffer());
+ kernel.SetArgument(3, beta_buffer());
+ kernel.SetArgument(4, b1_temp());
+ kernel.SetArgument(5, a2_temp());
+
+ // Runs the kernel again
+ auto eventKernel2 = Event();
+ status = RunKernel(kernel, queue_, device_, global, local, eventKernel2.pointer(), eventWaitList);
+ if (ErrorIn(status)) { return status; }
+ eventWaitList.push_back(eventKernel2);
+
+ // Runs the post-processing kernel
+ auto upper = (triangle == Triangle::kUpper);
+ auto lower = (triangle == Triangle::kLower);
+ status = PadCopyTransposeMatrix(queue_, device_, context_, db_, event_, eventWaitList,
+ n_ceiled, n_ceiled, n_ceiled, 0, c_temp,
+ n, n, c_ld, c_offset, c_buffer,
+ ConstantOne<T>(), program,
+ false, c_rotated, false, upper, lower, true);
+ if (ErrorIn(status)) { return status; }
+
+ // Successfully finished the computation
+ return StatusCode::kSuccess;
+ } catch (...) { return StatusCode::kInvalidKernel; }
+ } catch (...) { return StatusCode::kTempBufferAllocFailure; }
+}
+
+// =================================================================================================
+
+// Compiles the templated class
+template class Xher2k<float2,float>;
+template class Xher2k<double2,double>;
+
+// =================================================================================================
+} // namespace clblast