summaryrefslogtreecommitdiff
path: root/test/performance/client.cc
diff options
context:
space:
mode:
Diffstat (limited to 'test/performance/client.cc')
-rw-r--r--test/performance/client.cc94
1 files changed, 90 insertions, 4 deletions
diff --git a/test/performance/client.cc b/test/performance/client.cc
index ddaea0e1..3b07970c 100644
--- a/test/performance/client.cc
+++ b/test/performance/client.cc
@@ -26,8 +26,12 @@ template <typename T>
void ClientXY(int argc, char *argv[], Routine2<T> client_routine,
const std::vector<std::string> &options) {
+ // Function to determine how to find the default value of the leading dimension of matrix A.
+ // Note: this is not relevant for this client but given anyway.
+ auto default_ld_a = [](const Arguments<T> args) { return args.n; };
+
// Simple command line argument parser with defaults
- auto args = ParseArguments<T>(argc, argv, options);
+ auto args = ParseArguments<T>(argc, argv, options, default_ld_a);
if (args.print_help) { return; }
// Prints the header of the output table
@@ -81,13 +85,94 @@ template void ClientXY<double2>(int, char **, Routine2<double2>, const std::vect
// =================================================================================================
+// This is the matrix-vector-vector variant of the set-up/tear-down client routine.
+template <typename T>
+void ClientAXY(int argc, char *argv[], Routine3<T> client_routine,
+ const std::vector<std::string> &options) {
+
+ // Function to determine how to find the default value of the leading dimension of matrix A
+ auto default_ld_a = [](const Arguments<T> args) { return args.n; };
+
+ // Simple command line argument parser with defaults
+ auto args = ParseArguments<T>(argc, argv, options, default_ld_a);
+ if (args.print_help) { return; }
+
+ // Prints the header of the output table
+ PrintTableHeader(args.silent, options);
+
+ // Initializes OpenCL and the libraries
+ auto platform = Platform(args.platform_id);
+ auto device = Device(platform, kDeviceType, args.device_id);
+ auto context = Context(device);
+ auto queue = CommandQueue(context, device);
+ if (args.compare_clblas) { clblasSetup(); }
+
+ // Iterates over all "num_step" values jumping by "step" each time
+ auto s = size_t{0};
+ while(true) {
+
+ // Computes the second dimension of the matrix taking the rotation into account
+ auto a_two = (args.layout == Layout::kRowMajor) ? args.m : args.n;
+
+ // Computes the vector sizes in case the matrix is transposed
+ auto a_transposed = (args.a_transpose == Transpose::kYes);
+ auto m_real = (a_transposed) ? args.n : args.m;
+ auto n_real = (a_transposed) ? args.m : args.n;
+
+ // Computes the data sizes
+ auto a_size = a_two * args.a_ld + args.a_offset;
+ auto x_size = n_real*args.x_inc + args.x_offset;
+ auto y_size = m_real*args.y_inc + args.y_offset;
+
+ // Populates input host vectors with random data
+ std::vector<T> a_source(a_size);
+ std::vector<T> x_source(x_size);
+ std::vector<T> y_source(y_size);
+ PopulateVector(a_source);
+ PopulateVector(x_source);
+ PopulateVector(y_source);
+
+ // Creates the vectors on the device
+ auto a_buffer = Buffer(context, CL_MEM_READ_WRITE, a_size*sizeof(T));
+ auto x_buffer = Buffer(context, CL_MEM_READ_WRITE, x_size*sizeof(T));
+ auto y_buffer = Buffer(context, CL_MEM_READ_WRITE, y_size*sizeof(T));
+ a_buffer.WriteBuffer(queue, a_size*sizeof(T), a_source);
+ x_buffer.WriteBuffer(queue, x_size*sizeof(T), x_source);
+ y_buffer.WriteBuffer(queue, y_size*sizeof(T), y_source);
+
+ // Runs the routine-specific code
+ client_routine(args, a_buffer, x_buffer, y_buffer, queue);
+
+ // Makes the jump to the next step
+ ++s;
+ if (s >= args.num_steps) { break; }
+ args.m += args.step;
+ args.n += args.step;
+ args.a_ld += args.step;
+ }
+
+ // Cleans-up and returns
+ if (args.compare_clblas) { clblasTeardown(); }
+}
+
+// Compiles the above function
+template void ClientAXY<float>(int, char **, Routine3<float>, const std::vector<std::string>&);
+template void ClientAXY<double>(int, char **, Routine3<double>, const std::vector<std::string>&);
+template void ClientAXY<float2>(int, char **, Routine3<float2>, const std::vector<std::string>&);
+template void ClientAXY<double2>(int, char **, Routine3<double2>, const std::vector<std::string>&);
+
+// =================================================================================================
+
// This is the matrix-matrix-matrix variant of the set-up/tear-down client routine.
template <typename T>
void ClientABC(int argc, char *argv[], Routine3<T> client_routine,
const std::vector<std::string> &options) {
+ // Function to determine how to find the default value of the leading dimension of matrix A
+ auto default_ld_a = [](const Arguments<T> args) { return args.m; };
+
// Simple command line argument parser with defaults
- auto args = ParseArguments<T>(argc, argv, options);
+ auto args = ParseArguments<T>(argc, argv, options, default_ld_a);
if (args.print_help) { return; }
// Prints the header of the output table
@@ -167,7 +252,8 @@ template void ClientABC<double2>(int, char **, Routine3<double2>, const std::vec
// applicable, but are searched for anyway to be able to create one common argument parser. All
// arguments have a default value in case they are not found.
template <typename T>
-Arguments<T> ParseArguments(int argc, char *argv[], const std::vector<std::string> &options) {
+Arguments<T> ParseArguments(int argc, char *argv[], const std::vector<std::string> &options,
+ const std::function<size_t(const Arguments<T>)> default_ld_a) {
auto args = Arguments<T>{};
auto help = std::string{"Options given/available:\n"};
@@ -193,7 +279,7 @@ Arguments<T> ParseArguments(int argc, char *argv[], const std::vector<std::strin
if (o == kArgYOffset) { args.y_offset = GetArgument(argc, argv, help, kArgYOffset, size_t{0}); }
// Matrix arguments
- if (o == kArgALeadDim) { args.a_ld = GetArgument(argc, argv, help, kArgALeadDim, args.k); }
+ if (o == kArgALeadDim) { args.a_ld = GetArgument(argc, argv, help, kArgALeadDim, default_ld_a(args)); }
if (o == kArgBLeadDim) { args.b_ld = GetArgument(argc, argv, help, kArgBLeadDim, args.n); }
if (o == kArgCLeadDim) { args.c_ld = GetArgument(argc, argv, help, kArgCLeadDim, args.n); }
if (o == kArgAOffset) { args.a_offset = GetArgument(argc, argv, help, kArgAOffset, size_t{0}); }