summaryrefslogtreecommitdiff
path: root/test/performance/client.cc
diff options
context:
space:
mode:
Diffstat (limited to 'test/performance/client.cc')
-rw-r--r--test/performance/client.cc458
1 files changed, 143 insertions, 315 deletions
diff --git a/test/performance/client.cc b/test/performance/client.cc
index b089f925..71471dde 100644
--- a/test/performance/client.cc
+++ b/test/performance/client.cc
@@ -21,323 +21,36 @@
namespace clblast {
// =================================================================================================
-// This is the vector-vector variant of the set-up/tear-down client routine.
+// Constructor
template <typename T>
-void ClientXY(int argc, char *argv[], Routine2<T> client_routine,
- const std::vector<std::string> &options) {
-
- // Function to determine how to find the default value of the leading dimension of matrix A.
- // Note: this is not relevant for this client but given anyway.
- auto default_ld_a = [](const Arguments<T> args) { return args.n; };
-
- // Simple command line argument parser with defaults
- auto args = ParseArguments<T>(argc, argv, options, default_ld_a);
- if (args.print_help) { return; }
-
- // Prints the header of the output table
- PrintTableHeader(args.silent, options);
-
- // Initializes OpenCL and the libraries
- auto platform = Platform(args.platform_id);
- auto device = Device(platform, kDeviceType, args.device_id);
- auto context = Context(device);
- auto queue = CommandQueue(context, device);
- if (args.compare_clblas) { clblasSetup(); }
-
- // Iterates over all "num_step" values jumping by "step" each time
- auto s = size_t{0};
- while(true) {
-
- // Computes the data sizes
- auto x_size = args.n*args.x_inc + args.x_offset;
- auto y_size = args.n*args.y_inc + args.y_offset;
-
- // Populates input host vectors with random data
- std::vector<T> x_source(x_size);
- std::vector<T> y_source(y_size);
- PopulateVector(x_source);
- PopulateVector(y_source);
-
- // Creates the vectors on the device
- auto x_buffer = Buffer(context, CL_MEM_READ_WRITE, x_size*sizeof(T));
- auto y_buffer = Buffer(context, CL_MEM_READ_WRITE, y_size*sizeof(T));
- x_buffer.WriteBuffer(queue, x_size*sizeof(T), x_source);
- y_buffer.WriteBuffer(queue, y_size*sizeof(T), y_source);
-
- // Runs the routine-specific code
- client_routine(args, x_buffer, y_buffer, queue);
-
- // Makes the jump to the next step
- ++s;
- if (s >= args.num_steps) { break; }
- args.n += args.step;
- }
-
- // Cleans-up and returns
- if (args.compare_clblas) { clblasTeardown(); }
-}
-
-// Compiles the above function
-template void ClientXY<float>(int, char **, Routine2<float>, const std::vector<std::string>&);
-template void ClientXY<double>(int, char **, Routine2<double>, const std::vector<std::string>&);
-template void ClientXY<float2>(int, char **, Routine2<float2>, const std::vector<std::string>&);
-template void ClientXY<double2>(int, char **, Routine2<double2>, const std::vector<std::string>&);
-
-// =================================================================================================
-
-// This is the matrix-vector-vector variant of the set-up/tear-down client routine.
-template <typename T>
-void ClientAXY(int argc, char *argv[], Routine3<T> client_routine,
- const std::vector<std::string> &options) {
-
- // Function to determine how to find the default value of the leading dimension of matrix A
- auto default_ld_a = [](const Arguments<T> args) { return args.n; };
-
- // Simple command line argument parser with defaults
- auto args = ParseArguments<T>(argc, argv, options, default_ld_a);
- if (args.print_help) { return; }
-
- // Prints the header of the output table
- PrintTableHeader(args.silent, options);
-
- // Initializes OpenCL and the libraries
- auto platform = Platform(args.platform_id);
- auto device = Device(platform, kDeviceType, args.device_id);
- auto context = Context(device);
- auto queue = CommandQueue(context, device);
- if (args.compare_clblas) { clblasSetup(); }
-
- // Iterates over all "num_step" values jumping by "step" each time
- auto s = size_t{0};
- while(true) {
-
- // Computes the second dimension of the matrix taking the rotation into account
- auto a_two = (args.layout == Layout::kRowMajor) ? args.m : args.n;
-
- // Computes the vector sizes in case the matrix is transposed
- auto a_transposed = (args.a_transpose != Transpose::kNo);
- auto m_real = (a_transposed) ? args.n : args.m;
- auto n_real = (a_transposed) ? args.m : args.n;
-
- // Computes the data sizes
- auto a_size = a_two * args.a_ld + args.a_offset;
- auto x_size = n_real*args.x_inc + args.x_offset;
- auto y_size = m_real*args.y_inc + args.y_offset;
-
- // Populates input host vectors with random data
- std::vector<T> a_source(a_size);
- std::vector<T> x_source(x_size);
- std::vector<T> y_source(y_size);
- PopulateVector(a_source);
- PopulateVector(x_source);
- PopulateVector(y_source);
-
- // Creates the vectors on the device
- auto a_buffer = Buffer(context, CL_MEM_READ_WRITE, a_size*sizeof(T));
- auto x_buffer = Buffer(context, CL_MEM_READ_WRITE, x_size*sizeof(T));
- auto y_buffer = Buffer(context, CL_MEM_READ_WRITE, y_size*sizeof(T));
- a_buffer.WriteBuffer(queue, a_size*sizeof(T), a_source);
- x_buffer.WriteBuffer(queue, x_size*sizeof(T), x_source);
- y_buffer.WriteBuffer(queue, y_size*sizeof(T), y_source);
-
- // Runs the routine-specific code
- client_routine(args, a_buffer, x_buffer, y_buffer, queue);
-
- // Makes the jump to the next step
- ++s;
- if (s >= args.num_steps) { break; }
- args.m += args.step;
- args.n += args.step;
- args.a_ld += args.step;
- }
-
- // Cleans-up and returns
- if (args.compare_clblas) { clblasTeardown(); }
-}
-
-// Compiles the above function
-template void ClientAXY<float>(int, char **, Routine3<float>, const std::vector<std::string>&);
-template void ClientAXY<double>(int, char **, Routine3<double>, const std::vector<std::string>&);
-template void ClientAXY<float2>(int, char **, Routine3<float2>, const std::vector<std::string>&);
-template void ClientAXY<double2>(int, char **, Routine3<double2>, const std::vector<std::string>&);
-
-// =================================================================================================
-
-// This is the matrix-matrix variant of the set-up/tear-down client routine.
-template <typename T>
-void ClientAC(int argc, char *argv[], Routine2<T> client_routine,
- const std::vector<std::string> &options) {
-
- // Function to determine how to find the default value of the leading dimension of matrix A
- auto default_ld_a = [](const Arguments<T> args) { return args.k; };
-
- // Simple command line argument parser with defaults
- auto args = ParseArguments<T>(argc, argv, options, default_ld_a);
- if (args.print_help) { return; }
-
- // Prints the header of the output table
- PrintTableHeader(args.silent, options);
-
- // Initializes OpenCL and the libraries
- auto platform = Platform(args.platform_id);
- auto device = Device(platform, kDeviceType, args.device_id);
- auto context = Context(device);
- auto queue = CommandQueue(context, device);
- if (args.compare_clblas) { clblasSetup(); }
-
- // Computes whether or not the matrices are transposed. Note that we assume a default of
- // column-major and no-transpose. If one of them is different (but not both), then rotated
- // is considered true.
- auto a_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) ||
- (args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo);
-
- // Iterates over all "num_step" values jumping by "step" each time
- auto s = size_t{0};
- while(true) {
-
- // Computes the data sizes
- auto a_two = (a_rotated) ? args.n : args.k;
- auto a_size = a_two * args.a_ld + args.a_offset;
- auto c_size = args.n * args.c_ld + args.c_offset;
-
- // Populates input host matrices with random data
- std::vector<T> a_source(a_size);
- std::vector<T> c_source(c_size);
- PopulateVector(a_source);
- PopulateVector(c_source);
-
- // Creates the matrices on the device
- auto a_buffer = Buffer(context, CL_MEM_READ_WRITE, a_size*sizeof(T));
- auto c_buffer = Buffer(context, CL_MEM_READ_WRITE, c_size*sizeof(T));
- a_buffer.WriteBuffer(queue, a_size*sizeof(T), a_source);
- c_buffer.WriteBuffer(queue, c_size*sizeof(T), c_source);
-
- // Runs the routine-specific code
- client_routine(args, a_buffer, c_buffer, queue);
-
- // Makes the jump to the next step
- ++s;
- if (s >= args.num_steps) { break; }
- args.n += args.step;
- args.k += args.step;
- args.a_ld += args.step;
- args.c_ld += args.step;
- }
-
- // Cleans-up and returns
- if (args.compare_clblas) { clblasTeardown(); }
+Client<T>::Client(const Routine run_routine, const Routine run_reference,
+ const std::vector<std::string> &options,
+ const GetMetric get_flops, const GetMetric get_bytes):
+ run_routine_(run_routine),
+ run_reference_(run_reference),
+ options_(options),
+ get_flops_(get_flops),
+ get_bytes_(get_bytes) {
}
-// Compiles the above function
-template void ClientAC<float>(int, char **, Routine2<float>, const std::vector<std::string>&);
-template void ClientAC<double>(int, char **, Routine2<double>, const std::vector<std::string>&);
-template void ClientAC<float2>(int, char **, Routine2<float2>, const std::vector<std::string>&);
-template void ClientAC<double2>(int, char **, Routine2<double2>, const std::vector<std::string>&);
-
-// =================================================================================================
-
-// This is the matrix-matrix-matrix variant of the set-up/tear-down client routine.
-template <typename T>
-void ClientABC(int argc, char *argv[], Routine3<T> client_routine,
- const std::vector<std::string> &options, const bool symmetric) {
-
- // Function to determine how to find the default value of the leading dimension of matrix A
- auto default_ld_a = [&symmetric](const Arguments<T> args) { return (symmetric) ? args.n : args.m; };
-
- // Simple command line argument parser with defaults
- auto args = ParseArguments<T>(argc, argv, options, default_ld_a);
- if (args.print_help) { return; }
- if (symmetric) { args.m = args.n; }
-
- // Prints the header of the output table
- PrintTableHeader(args.silent, options);
-
- // Initializes OpenCL and the libraries
- auto platform = Platform(args.platform_id);
- auto device = Device(platform, kDeviceType, args.device_id);
- auto context = Context(device);
- auto queue = CommandQueue(context, device);
- if (args.compare_clblas) { clblasSetup(); }
-
- // Computes whether or not the matrices are transposed. Note that we assume a default of
- // column-major and no-transpose. If one of them is different (but not both), then rotated
- // is considered true.
- auto a_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) ||
- (args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo);
- auto b_rotated = (args.layout == Layout::kColMajor && args.b_transpose != Transpose::kNo) ||
- (args.layout == Layout::kRowMajor && args.b_transpose == Transpose::kNo);
- auto c_rotated = (args.layout == Layout::kRowMajor);
-
- // Iterates over all "num_step" values jumping by "step" each time
- auto s = size_t{0};
- while(true) {
-
- // Computes the data sizes
- auto a_two = (a_rotated) ? args.m : args.k;
- auto b_two = (b_rotated) ? args.k : args.n;
- auto c_two = (c_rotated) ? args.m : args.n;
- auto a_size = a_two * args.a_ld + args.a_offset;
- auto b_size = b_two * args.b_ld + args.b_offset;
- auto c_size = c_two * args.c_ld + args.c_offset;
-
- // Populates input host matrices with random data
- std::vector<T> a_source(a_size);
- std::vector<T> b_source(b_size);
- std::vector<T> c_source(c_size);
- PopulateVector(a_source);
- PopulateVector(b_source);
- PopulateVector(c_source);
-
- // Creates the matrices on the device
- auto a_buffer = Buffer(context, CL_MEM_READ_WRITE, a_size*sizeof(T));
- auto b_buffer = Buffer(context, CL_MEM_READ_WRITE, b_size*sizeof(T));
- auto c_buffer = Buffer(context, CL_MEM_READ_WRITE, c_size*sizeof(T));
- a_buffer.WriteBuffer(queue, a_size*sizeof(T), a_source);
- b_buffer.WriteBuffer(queue, b_size*sizeof(T), b_source);
- c_buffer.WriteBuffer(queue, c_size*sizeof(T), c_source);
-
- // Runs the routine-specific code
- client_routine(args, a_buffer, b_buffer, c_buffer, queue);
-
- // Makes the jump to the next step
- ++s;
- if (s >= args.num_steps) { break; }
- args.m += args.step;
- args.n += args.step;
- args.k += args.step;
- args.a_ld += args.step;
- args.b_ld += args.step;
- args.c_ld += args.step;
- }
-
- // Cleans-up and returns
- if (args.compare_clblas) { clblasTeardown(); }
-}
-
-// Compiles the above function
-template void ClientABC<float>(int, char **, Routine3<float>, const std::vector<std::string>&, const bool);
-template void ClientABC<double>(int, char **, Routine3<double>, const std::vector<std::string>&, const bool);
-template void ClientABC<float2>(int, char **, Routine3<float2>, const std::vector<std::string>&, const bool);
-template void ClientABC<double2>(int, char **, Routine3<double2>, const std::vector<std::string>&, const bool);
-
// =================================================================================================
// Parses all arguments available for the CLBlast client testers. Some arguments might not be
// applicable, but are searched for anyway to be able to create one common argument parser. All
// arguments have a default value in case they are not found.
template <typename T>
-Arguments<T> ParseArguments(int argc, char *argv[], const std::vector<std::string> &options,
- const std::function<size_t(const Arguments<T>)> default_ld_a) {
+Arguments<T> Client<T>::ParseArguments(int argc, char *argv[], const GetMetric default_a_ld,
+ const GetMetric default_b_ld, const GetMetric default_c_ld) {
auto args = Arguments<T>{};
auto help = std::string{"Options given/available:\n"};
// These are the options which are not for every client: they are optional
- for (auto &o: options) {
+ for (auto &o: options_) {
// Data-sizes
- if (o == kArgM) { args.m = args.k = GetArgument(argc, argv, help, kArgM, 512UL); }
- if (o == kArgN) { args.n = GetArgument(argc, argv, help, kArgN, 512UL); }
- if (o == kArgK) { args.k = GetArgument(argc, argv, help, kArgK, 512UL); }
+ if (o == kArgM) { args.m = GetArgument(argc, argv, help, kArgM, 512UL); }
+ if (o == kArgN) { args.n = GetArgument(argc, argv, help, kArgN, 512UL); }
+ if (o == kArgK) { args.k = GetArgument(argc, argv, help, kArgK, 512UL); }
// Data-layouts
if (o == kArgLayout) { args.layout = GetArgument(argc, argv, help, kArgLayout, Layout::kRowMajor); }
@@ -353,9 +66,9 @@ Arguments<T> ParseArguments(int argc, char *argv[], const std::vector<std::strin
if (o == kArgYOffset) { args.y_offset = GetArgument(argc, argv, help, kArgYOffset, size_t{0}); }
// Matrix arguments
- if (o == kArgALeadDim) { args.a_ld = GetArgument(argc, argv, help, kArgALeadDim, default_ld_a(args)); }
- if (o == kArgBLeadDim) { args.b_ld = GetArgument(argc, argv, help, kArgBLeadDim, args.n); }
- if (o == kArgCLeadDim) { args.c_ld = GetArgument(argc, argv, help, kArgCLeadDim, args.n); }
+ if (o == kArgALeadDim) { args.a_ld = GetArgument(argc, argv, help, kArgALeadDim, default_a_ld(args)); }
+ if (o == kArgBLeadDim) { args.b_ld = GetArgument(argc, argv, help, kArgBLeadDim, default_b_ld(args)); }
+ if (o == kArgCLeadDim) { args.c_ld = GetArgument(argc, argv, help, kArgCLeadDim, default_c_ld(args)); }
if (o == kArgAOffset) { args.a_offset = GetArgument(argc, argv, help, kArgAOffset, size_t{0}); }
if (o == kArgBOffset) { args.b_offset = GetArgument(argc, argv, help, kArgBOffset, size_t{0}); }
if (o == kArgCOffset) { args.c_offset = GetArgument(argc, argv, help, kArgCOffset, size_t{0}); }
@@ -387,16 +100,92 @@ Arguments<T> ParseArguments(int argc, char *argv[], const std::vector<std::strin
// =================================================================================================
+// This is main performance tester
+template <typename T>
+void Client<T>::PerformanceTest(Arguments<T> &args, const SetMetric set_sizes) {
+
+ // Prints the header of the output table
+ PrintTableHeader(args.silent, options_);
+
+ // Initializes OpenCL and the libraries
+ auto platform = Platform(args.platform_id);
+ auto device = Device(platform, kDeviceType, args.device_id);
+ auto context = Context(device);
+ auto queue = CommandQueue(context, device);
+ if (args.compare_clblas) { clblasSetup(); }
+
+ // Iterates over all "num_step" values jumping by "step" each time
+ auto s = size_t{0};
+ while(true) {
+
+ // Sets the buffer sizes (routine-specific)
+ set_sizes(args);
+
+ // Populates input host matrices with random data
+ std::vector<T> x_source(args.x_size);
+ std::vector<T> y_source(args.y_size);
+ std::vector<T> a_source(args.a_size);
+ std::vector<T> b_source(args.b_size);
+ std::vector<T> c_source(args.c_size);
+ PopulateVector(x_source);
+ PopulateVector(y_source);
+ PopulateVector(a_source);
+ PopulateVector(b_source);
+ PopulateVector(c_source);
+
+ // Creates the matrices on the device
+ auto x_vec = Buffer(context, CL_MEM_READ_WRITE, args.x_size*sizeof(T));
+ auto y_vec = Buffer(context, CL_MEM_READ_WRITE, args.y_size*sizeof(T));
+ auto a_mat = Buffer(context, CL_MEM_READ_WRITE, args.a_size*sizeof(T));
+ auto b_mat = Buffer(context, CL_MEM_READ_WRITE, args.b_size*sizeof(T));
+ auto c_mat = Buffer(context, CL_MEM_READ_WRITE, args.c_size*sizeof(T));
+ x_vec.WriteBuffer(queue, args.x_size*sizeof(T), x_source);
+ y_vec.WriteBuffer(queue, args.y_size*sizeof(T), y_source);
+ a_mat.WriteBuffer(queue, args.a_size*sizeof(T), a_source);
+ b_mat.WriteBuffer(queue, args.b_size*sizeof(T), b_source);
+ c_mat.WriteBuffer(queue, args.c_size*sizeof(T), c_source);
+ auto buffers = Buffers{x_vec, y_vec, a_mat, b_mat, c_mat};
+
+ // Runs the routines and collects the timings
+ auto ms_clblast = TimedExecution(args.num_runs, args, buffers, queue, run_routine_, "CLBlast");
+ auto ms_clblas = TimedExecution(args.num_runs, args, buffers, queue, run_reference_, "clBLAS");
+
+ // Prints the performance of both libraries
+ PrintTableRow(args, ms_clblast, ms_clblas);
+
+ // Makes the jump to the next step
+ ++s;
+ if (s >= args.num_steps) { break; }
+ args.m += args.step;
+ args.n += args.step;
+ args.k += args.step;
+ args.a_ld += args.step;
+ args.b_ld += args.step;
+ args.c_ld += args.step;
+ }
+
+ // Cleans-up and returns
+ if (args.compare_clblas) { clblasTeardown(); }
+}
+
+// =================================================================================================
+
// Creates a vector of timing results, filled with execution times of the 'main computation'. The
// timing is performed using the milliseconds chrono functions. The function returns the minimum
// value found in the vector of timing results. The return value is in milliseconds.
-double TimedExecution(const size_t num_runs, std::function<void()> main_computation) {
+template <typename T>
+double Client<T>::TimedExecution(const size_t num_runs, const Arguments<T> &args,
+ const Buffers &buffers, CommandQueue &queue,
+ Routine run_blas, const std::string &library_name) {
auto timings = std::vector<double>(num_runs);
for (auto &timing: timings) {
auto start_time = std::chrono::steady_clock::now();
// Executes the main computation
- main_computation();
+ auto status = run_blas(args, buffers, queue);
+ if (status != StatusCode::kSuccess) {
+ throw std::runtime_error(library_name+" error: "+ToString(static_cast<int>(status)));
+ }
// Records and stores the end-time
auto elapsed_time = std::chrono::steady_clock::now() - start_time;
@@ -408,7 +197,8 @@ double TimedExecution(const size_t num_runs, std::function<void()> main_computat
// =================================================================================================
// Prints the header of the performance table
-void PrintTableHeader(const bool silent, const std::vector<std::string> &args) {
+template <typename T>
+void Client<T>::PrintTableHeader(const bool silent, const std::vector<std::string> &args) {
if (!silent) {
for (auto i=size_t{0}; i<args.size(); ++i) { fprintf(stdout, "%9s ", ""); }
fprintf(stdout, " | <-- CLBlast --> | <-- clBLAS --> |\n");
@@ -419,29 +209,59 @@ void PrintTableHeader(const bool silent, const std::vector<std::string> &args) {
}
// Print a performance-result row
-void PrintTableRow(const std::vector<size_t> &args_int, const std::vector<std::string> &args_string,
- const bool no_abbrv, const double ms_clblast, const double ms_clblas,
- const unsigned long long flops, const unsigned long long bytes) {
+template <typename T>
+void Client<T>::PrintTableRow(const Arguments<T>& args, const double ms_clblast,
+ const double ms_clblas) {
+
+ // Creates a vector of relevant variables
+ auto integers = std::vector<size_t>{};
+ for (auto &o: options_) {
+ if (o == kArgM) { integers.push_back(args.m); }
+ if (o == kArgN) { integers.push_back(args.n); }
+ else if (o == kArgK) { integers.push_back(args.k); }
+ else if (o == kArgLayout) { integers.push_back(static_cast<size_t>(args.layout)); }
+ else if (o == kArgSide) { integers.push_back(static_cast<size_t>(args.side)); }
+ else if (o == kArgTriangle) { integers.push_back(static_cast<size_t>(args.triangle)); }
+ else if (o == kArgATransp) { integers.push_back(static_cast<size_t>(args.a_transpose)); }
+ else if (o == kArgBTransp) { integers.push_back(static_cast<size_t>(args.b_transpose)); }
+ else if (o == kArgXInc) { integers.push_back(args.x_inc); }
+ else if (o == kArgYInc) { integers.push_back(args.y_inc); }
+ else if (o == kArgXOffset) { integers.push_back(args.x_offset); }
+ else if (o == kArgYOffset) { integers.push_back(args.y_offset); }
+ else if (o == kArgALeadDim) { integers.push_back(args.a_ld); }
+ else if (o == kArgBLeadDim) { integers.push_back(args.b_ld); }
+ else if (o == kArgCLeadDim) { integers.push_back(args.c_ld); }
+ else if (o == kArgAOffset) { integers.push_back(args.a_offset); }
+ else if (o == kArgBOffset) { integers.push_back(args.b_offset); }
+ else if (o == kArgCOffset) { integers.push_back(args.c_offset); }
+ }
+ auto strings = std::vector<std::string>{};
+ for (auto &o: options_) {
+ if (o == kArgAlpha) { strings.push_back(ToString(args.alpha)); }
+ else if (o == kArgBeta) { strings.push_back(ToString(args.beta)); }
+ }
// Computes the GFLOPS and GB/s metrics
+ auto flops = get_flops_(args);
+ auto bytes = get_bytes_(args);
auto gflops_clblast = (ms_clblast != 0.0) ? (flops*1e-6)/ms_clblast : 0;
auto gflops_clblas = (ms_clblas != 0.0) ? (flops*1e-6)/ms_clblas: 0;
auto gbs_clblast = (ms_clblast != 0.0) ? (bytes*1e-6)/ms_clblast : 0;
auto gbs_clblas = (ms_clblas != 0.0) ? (bytes*1e-6)/ms_clblas: 0;
// Outputs the argument values
- for (auto &argument: args_int) {
- if (!no_abbrv && argument >= 1024*1024 && IsMultiple(argument, 1024*1024)) {
+ for (auto &argument: integers) {
+ if (!args.no_abbrv && argument >= 1024*1024 && IsMultiple(argument, 1024*1024)) {
fprintf(stdout, "%8luM;", argument/(1024*1024));
}
- else if (!no_abbrv && argument >= 1024 && IsMultiple(argument, 1024)) {
+ else if (!args.no_abbrv && argument >= 1024 && IsMultiple(argument, 1024)) {
fprintf(stdout, "%8luK;", argument/1024);
}
else {
fprintf(stdout, "%9lu;", argument);
}
}
- for (auto &argument: args_string) {
+ for (auto &argument: strings) {
fprintf(stdout, "%9s;", argument.c_str());
}
@@ -452,4 +272,12 @@ void PrintTableRow(const std::vector<size_t> &args_int, const std::vector<std::s
}
// =================================================================================================
+
+// Compiles the templated class
+template class Client<float>;
+template class Client<double>;
+template class Client<float2>;
+template class Client<double2>;
+
+// =================================================================================================
} // namespace clblast