summaryrefslogtreecommitdiff
path: root/test/routines/levelx/xconvgemm.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/routines/levelx/xconvgemm.hpp')
-rw-r--r--test/routines/levelx/xconvgemm.hpp243
1 files changed, 243 insertions, 0 deletions
diff --git a/test/routines/levelx/xconvgemm.hpp b/test/routines/levelx/xconvgemm.hpp
new file mode 100644
index 00000000..7fa4e701
--- /dev/null
+++ b/test/routines/levelx/xconvgemm.hpp
@@ -0,0 +1,243 @@
+
+// =================================================================================================
+// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
+// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
+// width of 100 characters per line.
+//
+// Author(s):
+// Cedric Nugteren <www.cedricnugteren.nl>
+//
+// This file implements a class with static methods to describe the Xconvgemm routine. Examples of
+// such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These
+// static methods are used by the correctness tester and the performance tester.
+//
+// =================================================================================================
+
+#ifndef CLBLAST_TEST_ROUTINES_XCONVGEMM_H_
+#define CLBLAST_TEST_ROUTINES_XCONVGEMM_H_
+
+#include "test/routines/common.hpp"
+
+namespace clblast {
+// =================================================================================================
+
+// See comment at top of file for a description of the class
+template <typename T>
+class TestXconvgemm {
+public:
+
+ // The BLAS level: 4 for the extra routines
+ static size_t BLASLevel() { return 4; }
+
+ // The list of arguments relevant for this routine
+ static std::vector<std::string> GetOptions() {
+ return {kArgChannels, kArgHeight, kArgWidth, kArgKernelH, kArgKernelW, kArgPadH, kArgPadW,
+ kArgStrideH, kArgStrideW, kArgDilationH, kArgDilationW, kArgNumKernels, kArgBatchCount,
+ kArgAOffset, kArgBOffset, kArgCOffset};
+ }
+ static std::vector<std::string> BuffersIn() { return {kBufMatA, kBufMatB, kBufMatC}; }
+ static std::vector<std::string> BuffersOut() { return {kBufMatC}; }
+
+ // Describes how to obtain the sizes of the buffers
+ static size_t OutputHeight(const Arguments<T> &args) {
+ const auto size = args.height + 2 * args.pad_h;
+ const auto padding = args.dilation_h * (args.kernel_h - 1) + 1;
+ if (size >= padding) { return (size - padding) / args.stride_h + 1; }
+ return 1;
+ }
+ static size_t OutputWidth(const Arguments<T> &args) {
+ const auto size = args.width + 2 * args.pad_w;
+ const auto padding = args.dilation_w * (args.kernel_w - 1) + 1;
+ if (size >= padding) { return (size - padding) / args.stride_w + 1; }
+ return 1;
+ }
+ static size_t NumPatches(const Arguments<T> &args) {
+ return OutputHeight(args) * OutputWidth(args) * args.channels;
+ }
+ static size_t GetSizeA(const Arguments<T> &args) { // 4D: NCHW == batch-channel-height-width
+ return args.batch_count * args.channels * args.height * args.width + args.a_offset;
+ }
+ static size_t GetSizeB(const Arguments<T> &args) { // 4D: KCHW == kernel-channel-height-width
+ return args.num_kernels * args.channels * args.kernel_h * args.kernel_w + args.b_offset;
+ }
+ static size_t GetSizeC(const Arguments<T> &args) { // 4D: NCHW == batch-channel-height-width
+ return args.batch_count * args.num_kernels * OutputHeight(args) * OutputWidth(args) + args.c_offset;
+ }
+
+ // Describes how to set the sizes of all the buffers
+ static void SetSizes(Arguments<T> &args, Queue&) {
+ args.a_size = GetSizeA(args);
+ args.b_size = GetSizeB(args);
+ args.c_size = GetSizeC(args);
+ }
+
+ // Describes what the default values of the leading dimensions of the matrices are
+ static size_t DefaultLDA(const Arguments<T> &) { return 1; } // N/A for this routine
+ static size_t DefaultLDB(const Arguments<T> &) { return 1; } // N/A for this routine
+ static size_t DefaultLDC(const Arguments<T> &) { return 1; } // N/A for this routine
+
+ // Describes which transpose options are relevant for this routine
+ using Transposes = std::vector<Transpose>;
+ static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine
+ static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine
+
+ // Describes how to prepare the input data
+ static void PrepareData(const Arguments<T>&, Queue&, const int, std::vector<T>&,
+ std::vector<T>&, std::vector<T>&, std::vector<T>&, std::vector<T>&,
+ std::vector<T>&, std::vector<T>&) {} // N/A for this routine
+
+ // Describes how to run the CLBlast routine
+ static StatusCode RunRoutine(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
+#ifdef OPENCL_API
+ auto queue_plain = queue();
+ auto event = cl_event{};
+ auto status = Convgemm<T>(args.channels, args.height, args.width,
+ args.kernel_h, args.kernel_w,
+ args.pad_h, args.pad_w,
+ args.stride_h, args.stride_w,
+ args.dilation_h, args.dilation_w,
+ args.num_kernels, args.batch_count,
+ buffers.a_mat(), args.a_offset,
+ buffers.b_mat(), args.b_offset,
+ buffers.c_mat(), args.c_offset,
+ &queue_plain, &event);
+ if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); }
+#elif CUDA_API
+ auto status = Convgemm<T>(args.channels, args.height, args.width,
+ args.kernel_h, args.kernel_w,
+ args.pad_h, args.pad_w,
+ args.stride_h, args.stride_w,
+ args.dilation_h, args.dilation_w,
+ args.num_kernels, args.batch_count,
+ buffers.a_mat(), args.a_offset,
+ buffers.b_mat(), args.b_offset,
+ buffers.c_mat(), args.c_offset,
+ queue.GetContext()(), queue.GetDevice()());
+ cuStreamSynchronize(queue());
+#endif
+ return status;
+ }
+
+ // Describes how to run a naive version of the routine (for correctness/performance comparison).
+ // Note that a proper clBLAS or CPU BLAS comparison is not available for non-BLAS routines.
+ static StatusCode RunReference1(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
+ auto buffers_host = BuffersHost<T>();
+ DeviceToHost(args, buffers, buffers_host, queue, BuffersIn());
+ const auto status = RunReference(args, buffers_host);
+ HostToDevice(args, buffers, buffers_host, queue, BuffersOut());
+ return status;
+ }
+
+ static StatusCode RunReference2(const Arguments<T> &args, BuffersHost<T> &buffers_host, Queue&) {
+ return RunReference(args, buffers_host);
+ }
+ static StatusCode RunReference3(const Arguments<T> &, BuffersCUDA<T> &, Queue &) {
+ return StatusCode::kUnknownError;
+ }
+
+ // Describes how to download the results of the computation (more importantly: which buffer)
+ static std::vector<T> DownloadResult(const Arguments<T> &args, Buffers<T> &buffers, Queue &queue) {
+ std::vector<T> result(args.c_size, static_cast<T>(0));
+ buffers.c_mat.Read(queue, args.c_size, result);
+ return result;
+ }
+
+ // Describes how to compute the indices of the result buffer
+ static size_t ResultID1(const Arguments<T> &args) { return OutputHeight(args) * OutputWidth(args); }
+ static size_t ResultID2(const Arguments<T> &args) { return args.num_kernels * args.batch_count; }
+ static size_t GetResultIndex(const Arguments<T> &args, const size_t id1, const size_t id2) {
+ return id1 + OutputHeight(args) * OutputWidth(args) * id2 + args.c_offset;
+ }
+
+ // Describes how to compute performance metrics
+ static size_t GetFlops(const Arguments<T> &args) {
+ const auto patch_size = args.kernel_h * args.kernel_w * args.channels;
+ const auto num_patches = OutputHeight(args) * OutputWidth(args);
+ return args.batch_count * 2 * num_patches * args.num_kernels * patch_size;
+ }
+ static size_t GetBytes(const Arguments<T> &args) {
+ return (GetSizeA(args) + GetSizeB(args) + GetSizeC(args)) * sizeof(T);
+ }
+};
+
+// =================================================================================================
+
+template <typename T>
+StatusCode RunReference(const Arguments<T> &args, BuffersHost<T> &buffers_host) {
+ const auto output_h = TestXconvgemm<T>::OutputHeight(args);
+ const auto output_w = TestXconvgemm<T>::OutputWidth(args);
+ for (auto batch_id = size_t{0}; batch_id < args.batch_count; ++batch_id) {
+ for (auto co_id = size_t{0}; co_id < args.num_kernels; ++co_id) { // output channels == num-kernels
+ for (auto ho_id = size_t{0}; ho_id < output_h; ++ho_id) { // image height
+ for (auto wo_id = size_t{0}; wo_id < output_w; ++wo_id) { // image width
+ auto result = ConstantZero<T>();
+
+ // 3D convolution
+ for (auto ci_id = size_t{0}; ci_id < args.channels; ++ci_id) { // input channels
+ for (auto kh_id = size_t{0}; kh_id < args.kernel_h; ++kh_id) { // kernel height
+ for (auto kw_id = size_t{0}; kw_id < args.kernel_w; ++kw_id) { // kernel width
+
+ // Retrieves the value from the input image
+ const auto hi_id = kh_id * args.dilation_h + args.stride_h * ho_id - args.pad_h;
+ const auto wi_id = kw_id * args.dilation_w + args.stride_w * wo_id - args.pad_w;
+ if (hi_id >= 0 && hi_id < args.height &&
+ wi_id >= 0 && wi_id < args.width) {
+ const auto input_index = wi_id + args.width * (
+ hi_id + args.height * (
+ ci_id + args.channels * (
+ batch_id)));
+ const auto input_value = buffers_host.a_mat[input_index + args.a_offset];
+
+ // Multiplies with the kernel tensor
+ const auto kernel_index = kw_id + args.kernel_w * (
+ kh_id + args.kernel_h * (
+ ci_id + args.channels * (
+ co_id)));
+ const auto kernel_value = buffers_host.b_mat[kernel_index + args.b_offset];
+ result += input_value * kernel_value;
+
+ }
+ }
+ }
+ }
+
+ // Sets the output value (NCHW == batch-channel-height-width)
+ const auto output_index = wo_id + output_w * (
+ ho_id + output_h * (
+ co_id + args.num_kernels * (
+ batch_id)));
+ buffers_host.c_mat[output_index + args.c_offset] = result;
+ }
+ }
+ }
+ }
+ return StatusCode::kSuccess;
+}
+
+// Half-precision version calling the above reference implementation after conversions
+template <>
+StatusCode RunReference<half>(const Arguments<half> &args, BuffersHost<half> &buffers_host) {
+ auto a_buffer2 = HalfToFloatBuffer(buffers_host.a_mat);
+ auto b_buffer2 = HalfToFloatBuffer(buffers_host.b_mat);
+ auto c_buffer2 = HalfToFloatBuffer(buffers_host.c_mat);
+ auto dummy = std::vector<float>(0);
+ auto buffers2 = BuffersHost<float>{dummy, dummy, a_buffer2, b_buffer2, c_buffer2, dummy, dummy};
+ auto args2 = Arguments<float>();
+ args2.a_size = args.a_size; args2.b_size = args.b_size; args2.c_size = args.c_size;
+ args2.channels = args.channels; args2.height = args.height; args2.width = args.width;
+ args2.kernel_h = args.kernel_h; args2.kernel_w = args.kernel_w;
+ args2.pad_h = args.pad_h; args2.pad_w = args.pad_w;
+ args2.stride_h = args.stride_h; args2.stride_w = args.stride_w;
+ args2.dilation_h = args.dilation_h; args2.dilation_w = args.dilation_w;
+ args2.num_kernels = args.num_kernels; args2.batch_count = args.batch_count;
+ args2.a_offset = args.a_offset; args2.b_offset = args.b_offset; args2.c_offset = args.c_offset;
+ auto status = RunReference(args2, buffers2);
+ FloatToHalfBuffer(buffers_host.c_mat, buffers2.c_mat);
+ return status;
+}
+
+// =================================================================================================
+} // namespace clblast
+
+// CLBLAST_TEST_ROUTINES_XCONVGEMM_H_
+#endif