// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements the Xgemv class (see the header for information about the class). // // ================================================================================================= #include "internal/routines/level2/xgemv.h" #include #include namespace clblast { // ================================================================================================= // Specific implementations to get the memory-type based on a template argument template <> const Precision Xgemv::precision_ = Precision::kSingle; template <> const Precision Xgemv::precision_ = Precision::kDouble; template <> const Precision Xgemv::precision_ = Precision::kComplexSingle; template <> const Precision Xgemv::precision_ = Precision::kComplexDouble; // ================================================================================================= // Constructor: forwards to base class constructor template Xgemv::Xgemv(Queue &queue, Event &event): Routine(queue, event, "GEMV", {"Xgemv"}, precision_) { source_string_ = #include "../../kernels/xgemv.opencl" ; } // ================================================================================================= // The main routine template StatusCode Xgemv::DoGemv(const Layout layout, const Transpose a_transpose, const size_t m, const size_t n, const T alpha, const Buffer &a_buffer, const size_t a_offset, const size_t a_ld, const Buffer &x_buffer, const size_t x_offset, const size_t x_inc, const T beta, const Buffer &y_buffer, const size_t y_offset, const size_t y_inc) { // Makes sure all dimensions are larger than zero if (m == 0 || n == 0) { return StatusCode::kInvalidDimension; } // Computes whether or not the matrix has an alternative layout (row or column-major). auto a_altlayout = (layout == Layout::kRowMajor); auto a_one = (a_altlayout) ? n : m; auto a_two = (a_altlayout) ? m : n; // Swap m and n if the matrix is transposed auto a_transposed = (a_transpose != Transpose::kNo); auto m_real = (a_transposed) ? n : m; auto n_real = (a_transposed) ? m : n; // Determines whether the kernel needs to perform rotated access ('^' is the XOR operator) auto a_rotated = a_transposed ^ a_altlayout; // In case of complex data-types, the transpose can also become a conjugate transpose auto a_conjugate = (a_transpose == Transpose::kConjugate); // Tests the matrix and the vectors for validity auto status = TestMatrixA(a_one, a_two, a_buffer, a_offset, a_ld, sizeof(T)); if (ErrorIn(status)) { return status; } status = TestVectorX(n_real, x_buffer, x_offset, x_inc, sizeof(T)); if (ErrorIn(status)) { return status; } status = TestVectorY(m_real, y_buffer, y_offset, y_inc, sizeof(T)); if (ErrorIn(status)) { return status; } // Determines whether or not the fast-version can be used bool use_fast_kernel = (a_offset == 0) && (a_rotated == 0) && (a_conjugate == 0) && IsMultiple(m, db_["WGS2"]*db_["WPT2"]) && IsMultiple(n, db_["WGS2"]) && IsMultiple(a_ld, db_["VW2"]); bool use_fast_kernel_rot = (a_offset == 0) && (a_rotated == 1) && (a_conjugate == 0) && IsMultiple(m, db_["WGS3"]*db_["WPT3"]) && IsMultiple(n, db_["WGS3"]) && IsMultiple(a_ld, db_["VW3"]); // If possible, run the fast-version (rotated or non-rotated) of the kernel auto kernel_name = "Xgemv"; auto m_ceiled = Ceil(m_real, db_["WGS1"]*db_["WPT1"]); auto global_size = m_ceiled / db_["WPT1"]; auto local_size = db_["WGS1"]; if (use_fast_kernel) { kernel_name = "XgemvFast"; global_size = m_real / db_["WPT2"]; local_size = db_["WGS2"]; } if (use_fast_kernel_rot) { kernel_name = "XgemvFastRot"; global_size = m_real / db_["WPT3"]; local_size = db_["WGS3"]; } // Retrieves the Xgemv kernel from the compiled binary try { auto& program = GetProgramFromCache(); auto kernel = Kernel(program, kernel_name); // Sets the kernel arguments kernel.SetArgument(0, static_cast(m_real)); kernel.SetArgument(1, static_cast(n_real)); kernel.SetArgument(2, alpha); kernel.SetArgument(3, beta); kernel.SetArgument(4, static_cast(a_rotated)); kernel.SetArgument(5, a_buffer()); kernel.SetArgument(6, static_cast(a_offset)); kernel.SetArgument(7, static_cast(a_ld)); kernel.SetArgument(8, x_buffer()); kernel.SetArgument(9, static_cast(x_offset)); kernel.SetArgument(10, static_cast(x_inc)); kernel.SetArgument(11, y_buffer()); kernel.SetArgument(12, static_cast(y_offset)); kernel.SetArgument(13, static_cast(y_inc)); kernel.SetArgument(14, static_cast(a_conjugate)); // Launches the kernel auto global = std::vector{global_size}; auto local = std::vector{local_size}; status = RunKernel(kernel, global, local); if (ErrorIn(status)) { return status; } // Waits for all kernels to finish queue_.Finish(); // Succesfully finished the computation return StatusCode::kSuccess; } catch (...) { return StatusCode::kInvalidKernel; } } // ================================================================================================= // Compiles the templated class template class Xgemv; template class Xgemv; template class Xgemv; template class Xgemv; // ================================================================================================= } // namespace clblast