// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements the Xgemm class (see the header for information about the class). // // ================================================================================================= #include "routines/level3/xgemm.hpp" #include #include namespace clblast { // ================================================================================================= // Constructor: forwards to base class constructor template Xgemm::Xgemm(Queue &queue, EventPointer event, const std::string &name): Routine(queue, event, name, {"Copy","Pad","Transpose","Padtranspose","Xgemm","XgemmDirect","GemmRoutine"}, PrecisionValue(), {}, { #include "../../kernels/level3/level3.opencl" #include "../../kernels/level3/copy_fast.opencl" #include "../../kernels/level3/copy_pad.opencl" #include "../../kernels/level3/transpose_fast.opencl" #include "../../kernels/level3/transpose_pad.opencl" #include "../../kernels/level3/convert_symmetric.opencl" #include "../../kernels/level3/convert_triangular.opencl" #include "../../kernels/level3/convert_hermitian.opencl" , // separated in multiple parts to prevent C1091 in MSVC 2013 #include "../../kernels/level3/xgemm_direct_part1.opencl" #include "../../kernels/level3/xgemm_direct_part2.opencl" #include "../../kernels/level3/xgemm_direct_part3.opencl" , // separated in multiple parts to prevent C1091 in MSVC 2013 #include "../../kernels/level3/xgemm_part1.opencl" #include "../../kernels/level3/xgemm_part2.opencl" #include "../../kernels/level3/xgemm_part3.opencl" #include "../../kernels/level3/xgemm_part4.opencl" }) { } // ================================================================================================= // The main routine template void Xgemm::DoGemm(const Layout layout, const Transpose a_transpose, const Transpose b_transpose, const size_t m, const size_t n, const size_t k, const T alpha, const Buffer &a_buffer, const size_t a_offset, const size_t a_ld, const Buffer &b_buffer, const size_t b_offset, const size_t b_ld, const T beta, const Buffer &c_buffer, const size_t c_offset, const size_t c_ld, const Buffer &temp_buffer, const bool temp_buffer_provided) { // optional arguments // Two methods to choose from, select which one to run const auto do_gemm_direct = UseDirectKernel(m, n, k, db_["XGEMM_MIN_INDIRECT_SIZE"]); const auto gemm_kernel_id = (do_gemm_direct) ? 0 : db_["GEMMK"]; // Computes the transpose/conjugate options and sets the a/b/c sizes based on that bool a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate; size_t a_one, a_two, b_one, b_two, c_one, c_two; ProcessArguments(layout, a_transpose, b_transpose, m, n, k, a_one, a_two, b_one, b_two, c_one, c_two, a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate, gemm_kernel_id); // Tests three matrices (A, B, C) for validity, first from a perspective of the OpenCL buffers and // their sizes, and then from a perspective of parameter values (e.g. m, n, k). Tests whether the // OpenCL buffers are valid and non-zero and whether the OpenCL buffers have sufficient storage // space. Also tests that the leading dimensions of: // matrix A cannot be less than K when rotated, or less than M when not-rotated // matrix B cannot be less than N when rotated, or less than K when not-rotated // matrix C cannot be less than N when rotated, or less than M when not-rotated TestMatrixA(a_one, a_two, a_buffer, a_offset, a_ld); TestMatrixB(b_one, b_two, b_buffer, b_offset, b_ld); TestMatrixC(c_one, c_two, c_buffer, c_offset, c_ld); // Selects which version of GEMM to run if (do_gemm_direct) { // for small sizes (single kernel) GemmDirect(m, n, k, alpha, a_buffer, a_offset, a_ld, b_buffer, b_offset, b_ld, beta, c_buffer, c_offset, c_ld, a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate); } else { // for larger sizes (pre/post-processing plus a very fast kernel) GemmIndirect(m, n, k, alpha, a_buffer, a_offset, a_ld, b_buffer, b_offset, b_ld, beta, c_buffer, c_offset, c_ld, a_do_transpose, b_do_transpose, c_do_transpose, a_conjugate, b_conjugate, a_one, a_two, b_one, b_two, c_one, c_two, temp_buffer, temp_buffer_provided); } } // ================================================================================================= // The indirect version of GEMM. This uses the faster but non-general kernel. It has specific // requirements, but several pre and post-processing kernels take care of those. However, the // overhead of these extra kernels might not be ideal for certain devices/arguments. template void Xgemm::GemmIndirect(const size_t m, const size_t n, const size_t k, const T alpha, const Buffer &a_buffer, const size_t a_offset, const size_t a_ld, const Buffer &b_buffer, const size_t b_offset, const size_t b_ld, const T beta, const Buffer &c_buffer, const size_t c_offset, const size_t c_ld, const bool a_do_transpose, const bool b_do_transpose, const bool c_do_transpose, const bool a_conjugate, const bool b_conjugate, const size_t a_one, const size_t a_two, const size_t b_one, const size_t b_two, const size_t c_one, const size_t c_two, const Buffer &temp_buffer, const bool temp_buffer_provided) { // Calculates the ceiled versions of m, n, and k const auto m_ceiled = Ceil(m, db_["MWG"]); const auto n_ceiled = Ceil(n, db_["NWG"]); const auto k_ceiled = Ceil(k, db_["KWG"] * db_["KREG"]); // Computes the first and second "internal" (ceiled) dimensions of the 3 matrices taking into account // whether the matrices need to be rotated or not for the kernel. size_t a_one_i, a_two_i, b_one_i, b_two_i, c_one_i, c_two_i; CalculateInternalDimensions(m, n, k, db_["MWG"], db_["NWG"], db_["KWG"] * db_["KREG"], a_one_i, a_two_i, b_one_i, b_two_i, c_one_i, c_two_i, db_["GEMMK"]); // Determines whether or not temporary matrices are needed auto a_no_temp = NoTempBuffer(a_one, a_one_i, a_two, a_two_i, a_ld, a_offset, a_do_transpose, a_conjugate); auto b_no_temp = NoTempBuffer(b_one, b_one_i, b_two, b_two_i, b_ld, b_offset, b_do_transpose, b_conjugate); auto c_no_temp = NoTempBuffer(c_one, c_one_i, c_two, c_two_i, c_ld, c_offset, c_do_transpose, false); // Computes the sizes and offsets for (optional) temporary buffers for the 3 matrices auto b_temp_offset = size_t{0}; auto c_temp_offset = size_t{0}; const auto temp_size = ComputeTempSize(a_no_temp, b_no_temp, c_no_temp, a_one_i*a_two_i, b_one_i*b_two_i, c_one_i*c_two_i, b_temp_offset, c_temp_offset); if (!IsMultiple(b_temp_offset, db_["VWN"])) { throw BLASError(StatusCode::kUnexpectedError); } if (!IsMultiple(c_temp_offset, db_["VWM"])) { throw BLASError(StatusCode::kUnexpectedError); } // Creates the buffer for the (optional) temporary matrices. Note that we use 'a_buffer' in case // when no temporary buffer is needed, but that's just to make it compile: it is never used. const auto temp_buffer_all = (temp_buffer_provided) ? temp_buffer : ((temp_size > 0) ? Buffer(context_, temp_size) : a_buffer); // Verifies if the provided temporary buffer is large enough if (temp_buffer_provided) { const auto required_size = temp_size * sizeof(T); if (temp_buffer_all.GetSize() < required_size) { throw BLASError(StatusCode::kInsufficientMemoryTemp); } } // Sets the buffer pointers for (temp) matrices A, B, and C const auto a_temp = (a_no_temp) ? a_buffer : temp_buffer_all; const auto b_temp = (b_no_temp) ? b_buffer : temp_buffer_all; const auto c_temp = (c_no_temp) ? c_buffer : temp_buffer_all; // Events of all kernels (including pre/post processing kernels) auto eventWaitList = std::vector(); auto emptyEventList = std::vector(); // Runs the pre-processing kernel for matrix A. This transposes the matrix, but also pads zeros // to fill it up until it reaches a certain multiple of size (kernel parameter dependent). In // case nothing has to be done, these kernels can be skipped. if (!a_no_temp) { auto eventProcessA = Event(); PadCopyTransposeMatrix(queue_, device_, db_, eventProcessA.pointer(), emptyEventList, a_one, a_two, a_ld, a_offset, a_buffer, a_one_i, a_two_i, a_one_i, 0, a_temp, ConstantOne(), program_, true, a_do_transpose, a_conjugate); eventWaitList.push_back(eventProcessA); } // As above, but now for matrix B if (!b_no_temp) { auto eventProcessB = Event(); PadCopyTransposeMatrix(queue_, device_, db_, eventProcessB.pointer(), emptyEventList, b_one, b_two, b_ld, b_offset, b_buffer, b_one_i, b_two_i, b_one_i, b_temp_offset, b_temp, ConstantOne(), program_, true, b_do_transpose, b_conjugate); eventWaitList.push_back(eventProcessB); } // As above, but now for matrix C. This is only necessary if C is used both as input and output. if (!c_no_temp && beta != static_cast(0)) { auto eventProcessC = Event(); PadCopyTransposeMatrix(queue_, device_, db_, eventProcessC.pointer(), emptyEventList, c_one, c_two, c_ld, c_offset, c_buffer, c_one_i, c_two_i, c_one_i, c_temp_offset, c_temp, ConstantOne(), program_, true, c_do_transpose, false); eventWaitList.push_back(eventProcessC); } // Retrieves the Xgemm kernel from the compiled binary auto kernel = Kernel(program_, "Xgemm"); // Sets the kernel arguments kernel.SetArgument(0, static_cast(m_ceiled)); kernel.SetArgument(1, static_cast(n_ceiled)); kernel.SetArgument(2, static_cast(k_ceiled)); kernel.SetArgument(3, GetRealArg(alpha)); kernel.SetArgument(4, GetRealArg(beta)); kernel.SetArgument(5, a_temp()); kernel.SetArgument(6, b_temp()); kernel.SetArgument(7, c_temp()); kernel.SetArgument(8, static_cast(b_temp_offset / db_["VWN"])); kernel.SetArgument(9, static_cast(c_temp_offset / db_["VWM"])); // Computes the global and local thread sizes const auto global = std::vector{ (c_one_i * db_["MDIMC"]) / db_["MWG"], (c_two_i * db_["NDIMC"]) / db_["NWG"] }; const auto local = std::vector{db_["MDIMC"], db_["NDIMC"]}; // Launches the kernel auto eventKernel = Event(); auto eventPointer = (!c_no_temp) ? eventKernel.pointer() : event_; RunKernel(kernel, queue_, device_, global, local, eventPointer, eventWaitList); // Runs the post-processing kernel if needed if (!c_no_temp) { eventWaitList.push_back(eventKernel); PadCopyTransposeMatrix(queue_, device_, db_, event_, eventWaitList, c_one_i, c_two_i, c_one_i, c_temp_offset, c_temp, c_one, c_two, c_ld, c_offset, c_buffer, ConstantOne(), program_, false, c_do_transpose, false); } } // ================================================================================================= // The direct version of GEMM, requiring just one kernel, no pre or post-processing kernels. template void Xgemm::GemmDirect(const size_t m, const size_t n, const size_t k, const T alpha, const Buffer &a_buffer, const size_t a_offset, const size_t a_ld, const Buffer &b_buffer, const size_t b_offset, const size_t b_ld, const T beta, const Buffer &c_buffer, const size_t c_offset, const size_t c_ld, const bool a_do_transpose, const bool b_do_transpose, const bool c_do_transpose, const bool a_conjugate, const bool b_conjugate) { // Retrieves the proper XgemmDirect kernel from the compiled binary const auto name = (a_do_transpose) ? (b_do_transpose ? "XgemmDirectTT" : "XgemmDirectTN") : (b_do_transpose ? "XgemmDirectNT" : "XgemmDirectNN"); auto kernel = Kernel(program_, name); // Sets the kernel arguments kernel.SetArgument(0, static_cast(m)); kernel.SetArgument(1, static_cast(n)); kernel.SetArgument(2, static_cast(k)); kernel.SetArgument(3, GetRealArg(alpha)); kernel.SetArgument(4, GetRealArg(beta)); kernel.SetArgument(5, a_buffer()); kernel.SetArgument(6, static_cast(a_offset)); kernel.SetArgument(7, static_cast(a_ld)); kernel.SetArgument(8, b_buffer()); kernel.SetArgument(9, static_cast(b_offset)); kernel.SetArgument(10, static_cast(b_ld)); kernel.SetArgument(11, c_buffer()); kernel.SetArgument(12, static_cast(c_offset)); kernel.SetArgument(13, static_cast(c_ld)); kernel.SetArgument(14, static_cast(c_do_transpose)); kernel.SetArgument(15, static_cast(a_conjugate)); kernel.SetArgument(16, static_cast(b_conjugate)); // Computes the global and local thread sizes const auto m_ceiled = Ceil(m, db_["WGD"]); const auto n_ceiled = Ceil(n, db_["WGD"]); const auto global = std::vector{ // CeilDiv(m * db_["MDIMCD"], db_["WGD"]), // CeilDiv(n * db_["NDIMCD"], db_["WGD"]) (m_ceiled * db_["MDIMCD"]) / db_["WGD"], (n_ceiled * db_["NDIMCD"]) / db_["WGD"] }; const auto local = std::vector{db_["MDIMCD"], db_["NDIMCD"]}; // Launches the kernel RunKernel(kernel, queue_, device_, global, local, event_); } // ================================================================================================= // Compiles the templated class template class Xgemm; template class Xgemm; template class Xgemm; template class Xgemm; template class Xgemm; // ================================================================================================= } // namespace clblast