// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements the Xsymm class (see the header for information about the class). // // ================================================================================================= #include "routines/level3/xsymm.hpp" #include #include namespace clblast { // ================================================================================================= // Constructor: forwards to base class constructor template Xsymm::Xsymm(Queue &queue, EventPointer event, const std::string &name): Xgemm(queue, event, name) { } // ================================================================================================= // The main routine template StatusCode Xsymm::DoSymm(const Layout layout, const Side side, const Triangle triangle, const size_t m, const size_t n, const T alpha, const Buffer &a_buffer, const size_t a_offset, const size_t a_ld, const Buffer &b_buffer, const size_t b_offset, const size_t b_ld, const T beta, const Buffer &c_buffer, const size_t c_offset, const size_t c_ld) { // Makes sure all dimensions are larger than zero if ((m == 0) || (n == 0) ) { return StatusCode::kInvalidDimension; } // Computes the k dimension. This is based on whether or not the symmetric matrix is A (on the // left) or B (on the right) in the Xgemm routine. auto k = (side == Side::kLeft) ? m : n; // Checks for validity of the squared A matrix auto status = TestMatrixA(k, k, a_buffer, a_offset, a_ld); if (ErrorIn(status)) { return status; } // Determines which kernel to run based on the layout (the Xgemm kernel assumes column-major as // default) and on whether we are dealing with an upper or lower triangle of the symmetric matrix bool is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) || (triangle == Triangle::kLower && layout == Layout::kRowMajor)); auto kernel_name = (is_upper) ? "SymmUpperToSquared" : "SymmLowerToSquared"; // Temporary buffer for a copy of the symmetric matrix try { auto temp_symm = Buffer(context_, k*k); // Creates a general matrix from the symmetric matrix to be able to run the regular Xgemm // routine afterwards try { const auto program = GetProgramFromCache(context_, PrecisionValue(), routine_name_); auto kernel = Kernel(program, kernel_name); // Sets the arguments for the symmetric-to-squared kernel kernel.SetArgument(0, static_cast(k)); kernel.SetArgument(1, static_cast(a_ld)); kernel.SetArgument(2, static_cast(a_offset)); kernel.SetArgument(3, a_buffer()); kernel.SetArgument(4, static_cast(k)); kernel.SetArgument(5, static_cast(k)); kernel.SetArgument(6, static_cast(0)); kernel.SetArgument(7, temp_symm()); // Uses the common padding kernel's thread configuration. This is allowed, since the // symmetric-to-squared kernel uses the same parameters. auto global = std::vector{Ceil(CeilDiv(k, db_["PAD_WPTX"]), db_["PAD_DIMX"]), Ceil(CeilDiv(k, db_["PAD_WPTY"]), db_["PAD_DIMY"])}; auto local = std::vector{db_["PAD_DIMX"], db_["PAD_DIMY"]}; auto kernelEvent = Event(); status = RunKernel(kernel, queue_, device_, global, local, kernelEvent.pointer()); if (ErrorIn(status)) { return status; } // Synchronize now: 'DoGemm' does not accept a list of events to wait for kernelEvent.WaitForCompletion(); // Runs the regular Xgemm code with either "C := AB+C" or ... if (side == Side::kLeft) { status = DoGemm(layout, Transpose::kNo, Transpose::kNo, m, n, k, alpha, temp_symm, 0, k, b_buffer, b_offset, b_ld, beta, c_buffer, c_offset, c_ld); } // ... with "C := BA+C". Note that A and B are now reversed. else { status = DoGemm(layout, Transpose::kNo, Transpose::kNo, m, n, k, alpha, b_buffer, b_offset, b_ld, temp_symm, 0, k, beta, c_buffer, c_offset, c_ld); // A and B are now reversed, so also reverse the error codes returned from the Xgemm routine switch(status) { case StatusCode::kInvalidMatrixA: status = StatusCode::kInvalidMatrixB; break; case StatusCode::kInvalidMatrixB: status = StatusCode::kInvalidMatrixA; break; case StatusCode::kInvalidLeadDimA: status = StatusCode::kInvalidLeadDimB; break; case StatusCode::kInvalidLeadDimB: status = StatusCode::kInvalidLeadDimA; break; case StatusCode::kInsufficientMemoryA: status = StatusCode::kInsufficientMemoryB; break; case StatusCode::kInsufficientMemoryB: status = StatusCode::kInsufficientMemoryA; break; } } // Return the status of the Xgemm routine return status; } catch (...) { return StatusCode::kInvalidKernel; } } catch (...) { return StatusCode::kTempBufferAllocFailure; } } // ================================================================================================= // Compiles the templated class template class Xsymm; template class Xsymm; template class Xsymm; template class Xsymm; template class Xsymm; // ================================================================================================= } // namespace clblast