// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements the Xsyr2k class (see the header for information about the class). // // ================================================================================================= #include "routines/level3/xsyr2k.hpp" #include #include namespace clblast { // ================================================================================================= // Constructor: forwards to base class constructor template Xsyr2k::Xsyr2k(Queue &queue, EventPointer event, const std::string &name): Routine(queue, event, name, {"Copy","Pad","Transpose","Padtranspose","Xgemm"}, PrecisionValue(), {}, { #include "../../kernels/level3/level3.opencl" #include "../../kernels/level3/copy_fast.opencl" #include "../../kernels/level3/copy_pad.opencl" #include "../../kernels/level3/transpose_fast.opencl" #include "../../kernels/level3/transpose_pad.opencl" , // separated in multiple parts to prevent C1091 in MSVC 2013 #include "../../kernels/level3/xgemm_part1.opencl" #include "../../kernels/level3/xgemm_part2.opencl" #include "../../kernels/level3/xgemm_part3.opencl" #include "../../kernels/level3/xgemm_part4.opencl" }) { } // ================================================================================================= // The main routine template void Xsyr2k::DoSyr2k(const Layout layout, const Triangle triangle, const Transpose ab_transpose, const size_t n, const size_t k, const T alpha, const Buffer &a_buffer, const size_t a_offset, const size_t a_ld, const Buffer &b_buffer, const size_t b_offset, const size_t b_ld, const T beta, const Buffer &c_buffer, const size_t c_offset, const size_t c_ld) { // Makes sure all dimensions are larger than zero if ((n == 0) || (k == 0) ) { throw BLASError(StatusCode::kInvalidDimension); } // Computes whether or not the matrices are transposed in memory. This is based on their layout // (row or column-major) and whether or not they are requested to be pre-transposed. auto ab_rotated = (layout == Layout::kColMajor && ab_transpose != Transpose::kNo) || (layout == Layout::kRowMajor && ab_transpose == Transpose::kNo); auto c_rotated = (layout == Layout::kRowMajor); // Computes the first and second dimensions of the A and B matrices taking the layout into account auto ab_one = (ab_rotated) ? k : n; auto ab_two = (ab_rotated) ? n : k; // Tests the matrices (A, B, C) for validity, first from a perspective of the OpenCL buffers and // their sizes, and then from a perspective of parameter values (e.g. n, k). Tests whether the // OpenCL buffers are valid and non-zero and whether the OpenCL buffers have sufficient storage // space. Also tests that the leading dimensions of: // matrix A cannot be less than N when rotated, or less than K when not-rotated // matrix B cannot be less than N when rotated, or less than K when not-rotated // matrix C cannot be less than N TestMatrixA(ab_one, ab_two, a_buffer, a_offset, a_ld); TestMatrixB(ab_one, ab_two, b_buffer, b_offset, b_ld); TestMatrixC(n, n, c_buffer, c_offset, c_ld); // Calculates the ceiled versions of n and k auto n_ceiled = Ceil(Ceil(n, db_["MWG"]), db_["NWG"]); auto k_ceiled = Ceil(k, db_["KWG"]); // Decides which kernel to run: the upper-triangular or lower-triangular version auto kernel_name = (triangle == Triangle::kUpper) ? "XgemmUpper" : "XgemmLower"; // Determines whether or not temporary matrices are needed auto a_no_temp = ab_one == n_ceiled && ab_two == k_ceiled && a_ld == n_ceiled && a_offset == 0 && ab_rotated == false; auto b_no_temp = ab_one == n_ceiled && ab_two == k_ceiled && b_ld == n_ceiled && b_offset == 0 && ab_rotated == false; // Creates the temporary matrices auto a_temp = (a_no_temp) ? a_buffer : Buffer(context_, k_ceiled*n_ceiled); auto b_temp = (b_no_temp) ? b_buffer : Buffer(context_, k_ceiled*n_ceiled); auto c_temp = Buffer(context_, n_ceiled*n_ceiled); // Events of all kernels (including pre/post processing kernels) auto eventWaitList = std::vector(); auto emptyEventList = std::vector(); // Runs the pre-processing kernels. This transposes the matrices A and B, but also pads zeros to // to fill it up until it reaches a certain multiple of size (kernel parameter dependent). In // case nothing has to be done, these kernels can be skipped. if (!a_no_temp) { auto eventProcessA = Event(); PadCopyTransposeMatrix(queue_, device_, db_, eventProcessA.pointer(), emptyEventList, ab_one, ab_two, a_ld, a_offset, a_buffer, n_ceiled, k_ceiled, n_ceiled, 0, a_temp, ConstantOne(), program_, true, ab_rotated, false); eventWaitList.push_back(eventProcessA); } if (!b_no_temp) { auto eventProcessB = Event(); PadCopyTransposeMatrix(queue_, device_, db_, eventProcessB.pointer(), emptyEventList, ab_one, ab_two, b_ld, b_offset, b_buffer, n_ceiled, k_ceiled, n_ceiled, 0, b_temp, ConstantOne(), program_, true, ab_rotated, false); eventWaitList.push_back(eventProcessB); } // Furthermore, also creates a (possibly padded) copy of matrix C, since it is not allowed to // modify the other triangle. auto eventProcessC = Event(); PadCopyTransposeMatrix(queue_, device_, db_, eventProcessC.pointer(), emptyEventList, n, n, c_ld, c_offset, c_buffer, n_ceiled, n_ceiled, n_ceiled, 0, c_temp, ConstantOne(), program_, true, c_rotated, false); eventWaitList.push_back(eventProcessC); // Retrieves the XgemmUpper or XgemmLower kernel from the compiled binary auto kernel = Kernel(program_, kernel_name); // Sets the kernel arguments kernel.SetArgument(0, static_cast(n_ceiled)); kernel.SetArgument(1, static_cast(k_ceiled)); kernel.SetArgument(2, GetRealArg(alpha)); kernel.SetArgument(3, GetRealArg(beta)); kernel.SetArgument(4, a_temp()); kernel.SetArgument(5, b_temp()); kernel.SetArgument(6, c_temp()); // Computes the global and local thread sizes auto global = std::vector{ (n_ceiled * db_["MDIMC"]) / db_["MWG"], (n_ceiled * db_["NDIMC"]) / db_["NWG"] }; auto local = std::vector{db_["MDIMC"], db_["NDIMC"]}; // Launches the kernel auto eventKernel1 = Event(); RunKernel(kernel, queue_, device_, global, local, eventKernel1.pointer(), eventWaitList); eventWaitList.push_back(eventKernel1); // Swaps the arguments for matrices A and B, and sets 'beta' to 1 auto one = ConstantOne(); kernel.SetArgument(3, GetRealArg(one)); kernel.SetArgument(4, b_temp()); kernel.SetArgument(5, a_temp()); // Runs the kernel again auto eventKernel2 = Event(); RunKernel(kernel, queue_, device_, global, local, eventKernel2.pointer(), eventWaitList); eventWaitList.push_back(eventKernel2); // Runs the post-processing kernel auto upper = (triangle == Triangle::kUpper); auto lower = (triangle == Triangle::kLower); PadCopyTransposeMatrix(queue_, device_, db_, event_, eventWaitList, n_ceiled, n_ceiled, n_ceiled, 0, c_temp, n, n, c_ld, c_offset, c_buffer, ConstantOne(), program_, false, c_rotated, false, upper, lower, false); } // ================================================================================================= // Compiles the templated class template class Xsyr2k; template class Xsyr2k; template class Xsyr2k; template class Xsyr2k; template class Xsyr2k; // ================================================================================================= } // namespace clblast