// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements the Xtrmm class (see the header for information about the class). // // ================================================================================================= #include "routines/level3/xtrmm.hpp" #include #include namespace clblast { // ================================================================================================= // Constructor: forwards to base class constructor template Xtrmm::Xtrmm(Queue &queue, EventPointer event, const std::string &name): Xgemm(queue, event, name) { } // ================================================================================================= // The main routine template void Xtrmm::DoTrmm(const Layout layout, const Side side, const Triangle triangle, const Transpose a_transpose, const Diagonal diagonal, const size_t m, const size_t n, const T alpha, const Buffer &a_buffer, const size_t a_offset, const size_t a_ld, const Buffer &b_buffer, const size_t b_offset, const size_t b_ld) { // Makes sure all dimensions are larger than zero if ((m == 0) || (n == 0)) { throw BLASError(StatusCode::kInvalidDimension); } // Computes the k dimension. This is based on whether or not matrix is A (on the left) // or B (on the right) in the Xgemm routine. auto k = (side == Side::kLeft) ? m : n; // Checks for validity of the triangular A matrix TestMatrixA(k, k, a_buffer, a_offset, a_ld); // Checks for validity of the input/output B matrix const auto b_one = (layout == Layout::kRowMajor) ? n : m; const auto b_two = (layout == Layout::kRowMajor) ? m : n; TestMatrixB(b_one, b_two, b_buffer, b_offset, b_ld); // Creates a copy of B to avoid overwriting input in GEMM while computing output const auto b_size = (b_ld * (b_two - 1) + b_one + b_offset); auto b_buffer_copy = Buffer(context_, b_size); b_buffer.CopyTo(queue_, b_size, b_buffer_copy); // Determines which kernel to run based on the layout (the Xgemm kernel assumes column-major as // default) and on whether we are dealing with an upper or lower triangle of the triangular matrix bool is_upper = ((triangle == Triangle::kUpper && layout != Layout::kRowMajor) || (triangle == Triangle::kLower && layout == Layout::kRowMajor)); auto kernel_name = (is_upper) ? "TriaUpperToSquared" : "TriaLowerToSquared"; // Determines whether or not the triangular matrix is unit-diagonal auto unit_diagonal = (diagonal == Diagonal::kUnit) ? true : false; // Temporary buffer for a copy of the triangular matrix auto temp_triangular = Buffer(context_, k*k); // Creates a general matrix from the triangular matrix to be able to run the regular Xgemm // routine afterwards auto kernel = Kernel(program_, kernel_name); // Sets the arguments for the triangular-to-squared kernel kernel.SetArgument(0, static_cast(k)); kernel.SetArgument(1, static_cast(a_ld)); kernel.SetArgument(2, static_cast(a_offset)); kernel.SetArgument(3, a_buffer()); kernel.SetArgument(4, static_cast(k)); kernel.SetArgument(5, static_cast(k)); kernel.SetArgument(6, static_cast(0)); kernel.SetArgument(7, temp_triangular()); kernel.SetArgument(8, static_cast(unit_diagonal)); // Uses the common padding kernel's thread configuration. This is allowed, since the // triangular-to-squared kernel uses the same parameters. auto global = std::vector{Ceil(CeilDiv(k, db_["PAD_WPTX"]), db_["PAD_DIMX"]), Ceil(CeilDiv(k, db_["PAD_WPTY"]), db_["PAD_DIMY"])}; auto local = std::vector{db_["PAD_DIMX"], db_["PAD_DIMY"]}; auto kernelEvent = Event(); RunKernel(kernel, queue_, device_, global, local, kernelEvent.pointer()); // Synchronize now: 'DoGemm' does not accept a list of events to wait for kernelEvent.WaitForCompletion(); // Runs the regular Xgemm code with either "B := alpha*A*B" or ... if (side == Side::kLeft) { DoGemm(layout, a_transpose, Transpose::kNo, m, n, k, alpha, temp_triangular, 0, k, b_buffer_copy, b_offset, b_ld, ConstantZero(), b_buffer, b_offset, b_ld); } // ... with "B := alpha*B*A". Note that A and B are now reversed. else { try { DoGemm(layout, Transpose::kNo, a_transpose, m, n, k, alpha, b_buffer_copy, b_offset, b_ld, temp_triangular, 0, k, ConstantZero(), b_buffer, b_offset, b_ld); } catch (BLASError &e) { // A and B are now reversed, so also reverse the error codes returned from the Xgemm routine switch(e.status()) { case StatusCode::kInvalidMatrixA: throw BLASError(StatusCode::kInvalidMatrixB, e.details()); case StatusCode::kInvalidMatrixB: throw BLASError(StatusCode::kInvalidMatrixA, e.details()); case StatusCode::kInvalidLeadDimA: throw BLASError(StatusCode::kInvalidLeadDimB, e.details()); case StatusCode::kInvalidLeadDimB: throw BLASError(StatusCode::kInvalidLeadDimA, e.details()); case StatusCode::kInsufficientMemoryA: throw BLASError(StatusCode::kInsufficientMemoryB, e.details()); case StatusCode::kInsufficientMemoryB: throw BLASError(StatusCode::kInsufficientMemoryA, e.details()); default: throw; } } } } // ================================================================================================= // Compiles the templated class template class Xtrmm; template class Xtrmm; template class Xtrmm; template class Xtrmm; template class Xtrmm; // ================================================================================================= } // namespace clblast