// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file uses the auto-tuner to tune the ConvGemm kernels. These kernels are based on the GEMM // direct kernel and will use those parameters, this tuner is just optional to use for advanced // users. // // ================================================================================================= #include #include #include "utilities/utilities.hpp" #include "tuning/tuning.hpp" namespace clblast { // ================================================================================================= // Helper functions template size_t OutputHeight(const Arguments &args) { const auto size = args.height + 2 * args.pad_h; const auto padding = args.dilation_h * (args.kernel_h - 1) + 1; if (size >= padding) { return (size - padding) / args.stride_h + 1; } return 1; } template size_t OutputWidth(const Arguments &args) { const auto size = args.width + 2 * args.pad_w; const auto padding = args.dilation_w * (args.kernel_w - 1) + 1; if (size >= padding) { return (size - padding) / args.stride_w + 1; } return 1; } // Settings for this kernel (default command-line arguments) TunerDefaults XConvGemmGetTunerDefaults(const int) { auto settings = TunerDefaults(); settings.options = {kArgChannels, kArgHeight, kArgWidth, kArgKernelH, kArgKernelW, kArgNumKernels, kArgBatchCount, kArgFraction}; settings.channels = 32; settings.height = 66; settings.width = 66; // num_patches = 64x64 = 4096 settings.kernel_h = 3; settings.kernel_w = 3; settings.num_kernels = 32; settings.default_batch_count = 16; settings.default_fraction = 1.0; settings.default_num_runs = 2; return settings; } // Settings for this kernel (general) template TunerSettings XConvGemmGetTunerSettings(const int, const Arguments &args) { auto settings = TunerSettings(); // Identification of the kernel settings.kernel_family = "xconvgemm"; settings.kernel_name = "XconvgemmNormal"; settings.sources = "#define ROUTINE_CONVGEMM" #include "../src/kernels/level3/xgemm_direct_part1.opencl" #include "../src/kernels/level3/xgemm_direct_part2.opencl" #include "../src/kernels/level3/xgemm_direct_part3.opencl" #include "../src/kernels/levelx/xconvgemm_part1.opencl" #include "../src/kernels/levelx/xconvgemm_part2.opencl" ; // Helper variables const auto patch_size = args.kernel_h * args.kernel_w * args.channels; const auto num_patches = OutputHeight(args) * OutputWidth(args); // Buffer sizes settings.size_a = args.batch_count * args.channels * args.height * args.width; settings.size_b = args.num_kernels * args.channels * args.kernel_h * args.kernel_w; settings.size_c = args.batch_count * args.num_kernels * OutputHeight(args) * OutputWidth(args); // Inputs and outputs IDs (X:0, Y:1, A:2, B:3, C:4, temp:5) settings.inputs = {2, 3, 4}; settings.outputs = {4}; // Sets the base thread configuration settings.global_size = {num_patches, args.num_kernels, args.batch_count}; settings.global_size_ref = settings.global_size; settings.local_size = {1, 1, 1}; settings.local_size_ref = {8, 8, 1}; // Transforms the thread configuration based on the parameters settings.mul_local = {{"MDIMCD", "NDIMCD"}}; settings.mul_global = {{"MDIMCD", "NDIMCD"}}; settings.div_global = {{"WGD", "WGD"}}; // Sets the tuning parameters and their possible values settings.parameters = { {"WGD", {8, 16, 32}}, {"MDIMCD", {8, 16, 32}}, {"NDIMCD", {8, 16, 32}}, {"MDIMAD", {8, 16, 32}}, {"NDIMBD", {8, 16, 32}}, {"KWID", {1}}, {"VWMD", {1, 2, 4, 8}}, {"VWND", {1, 2, 4, 8}}, {"PADA", {0}}, {"PADB", {0}}, }; // Describes how to compute the performance metrics settings.metric_amount = args.batch_count * 2 * num_patches * args.num_kernels * patch_size; settings.performance_unit = "GFLOPS"; return settings; } // Tests for valid arguments template void XConvGemmTestValidArguments(const int, const Arguments &) { } std::vector XConvGemmSetConstraints(const int) { auto constraints = std::vector(); auto MultipleOfX = [] (std::vector v) { return IsMultiple(v[0], v[1]); }; auto MultipleOfXMulY = [] (std::vector v) { return IsMultiple(v[0], v[1]*v[2]); }; auto MultipleOfXMulYDivZ = [] (std::vector v) { return IsMultiple(v[0], (v[1]*v[2])/v[3]); }; // Requirement for unrolling the WGD loop constraints.push_back({MultipleOfX, {"WGD", "KWID"}}); // Required for integer MWID and NWID constraints.push_back({MultipleOfXMulY, {"WGD", "MDIMCD", "VWMD"}}); constraints.push_back({MultipleOfXMulY, {"WGD", "NDIMCD", "VWND"}}); // Required for integer MWIAD and NWIBD constraints.push_back({MultipleOfXMulY, {"WGD", "MDIMAD", "VWMD"}}); constraints.push_back({MultipleOfXMulY, {"WGD", "NDIMBD", "VWND"}}); // WGD has to be a multiple of KDIMAD = ((MDIMCD*NDIMCD)/(MDIMAD)) and KDIMBD = (...) constraints.push_back({MultipleOfXMulYDivZ, {"WGD", "MDIMCD", "NDIMCD", "MDIMAD"}}); constraints.push_back({MultipleOfXMulYDivZ, {"WGD", "MDIMCD", "NDIMCD", "NDIMBD"}}); return constraints; } template LocalMemSizeInfo XConvGemmComputeLocalMemSize(const int) { return { [] (std::vector v) -> size_t { return GetBytes(PrecisionValue()) * ((v[0]*(v[0] + v[1]) + v[0]*(v[0] + v[2]))); }, {"WGD", "PADA", "PADB"} }; } // Sets the kernel's arguments template void XConvGemmSetArguments(const int, Kernel &kernel, const Arguments &args, std::vector>& buffers) { const auto output_h = OutputHeight(args); const auto output_w = OutputWidth(args); const auto patch_size = args.kernel_h * args.kernel_w * args.channels; const auto num_patches = output_h * output_w; const auto result_stride = args.num_kernels * output_h * output_w; kernel.SetArgument(0, static_cast(num_patches)); kernel.SetArgument(1, static_cast(args.num_kernels)); kernel.SetArgument(2, static_cast(patch_size)); kernel.SetArgument(3, buffers[3]()); // 3 == B matrix ==> kernel buffer kernel.SetArgument(4, 0); // kernel offset kernel.SetArgument(5, buffers[4]()); // 4 == C matrix ==> result buffer kernel.SetArgument(6, 0); // result offset kernel.SetArgument(7, static_cast(result_stride)); kernel.SetArgument(8, buffers[2]()); // 2 == A matrix ==> image buffer kernel.SetArgument(9, 0); // image offset kernel.SetArgument(10, static_cast(args.height)); kernel.SetArgument(11, static_cast(args.width)); kernel.SetArgument(12, static_cast(args.channels)); kernel.SetArgument(13, static_cast(args.kernel_h)); kernel.SetArgument(14, static_cast(args.kernel_w)); kernel.SetArgument(15, 0); // pad_h kernel.SetArgument(16, 0); // pad_w kernel.SetArgument(17, 1); // stride_h kernel.SetArgument(18, 1); // stride_w kernel.SetArgument(19, 1); // dilation_h kernel.SetArgument(20, 1); // dilation_w kernel.SetArgument(21, static_cast(output_h)); kernel.SetArgument(22, static_cast(output_w)); } // ================================================================================================= } // namespace clblast