// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file uses the CLTune auto-tuner to tune the direct xgemm kernels. There are two variations: // - V==1: This tests some limited set of tuning parameters exhaustively. // - V==2: This tests a much larger set of tuning parameters by randomly sampling a subset. // // ================================================================================================= #include #include #include "utilities/utilities.hpp" #include "tuning/tuning.hpp" namespace clblast { // ================================================================================================= // See comment at top of file for a description of the class template class TuneXgemmDirect { public: // The representative kernel and the source code static std::string KernelFamily() { return (V==1) ? "xgemm_direct_1" : "xgemm_direct_2"; } static std::string KernelName() { return "XgemmDirectTN"; } static std::string GetSources() { return #include "../src/kernels/common.opencl" #include "../src/kernels/level3/xgemm_direct_part1.opencl" #include "../src/kernels/level3/xgemm_direct_part2.opencl" #include "../src/kernels/level3/xgemm_direct_part3.opencl" ; } // The list of arguments relevant for this routine static std::vector GetOptions() { return {kArgM, kArgN, kArgK, kArgAlpha, kArgBeta, kArgFraction, kArgHeuristicSelection, kArgMultiSearchStrategy, kArgPsoSwarmSize, kArgPsoInfGlobal, kArgPsoInfLocal, kArgPsoInfRandom}; } // Tests for valid arguments static void TestValidArguments(const Arguments &) { } // Sets the default values for the arguments static size_t DefaultM() { return 256; } static size_t DefaultN() { return 256; } static size_t DefaultK() { return 256; } static size_t DefaultBatchCount() { return 1; } // N/A for this kernel static double DefaultFraction() { return (V==1) ? 1.0 : 32.0; } // test all or sample randomly static size_t DefaultNumRuns() { return 4; } // run every kernel this many times for averaging static size_t DefaultNumSearchStragegy() { return 2; } // Full search and Random/PSO static size_t DefaultSwarmSizePSO() { return 8; } static double DefaultInfluenceGlobalPSO(){ return 0.1; } static double DefaultInfluenceLocalPSO(){ return 0.3; } static double DefaultInfluenceRandomPSO(){ return 0.6; } static size_t DefaultHeuristic(){ return size_t{3};} // PSO static double DefaultMaxTempAnn(){ return 1.0;} // Describes how to obtain the sizes of the buffers static size_t GetSizeX(const Arguments &) { return 1; } // N/A for this kernel static size_t GetSizeY(const Arguments &) { return 1; } // N/A for this kernel static size_t GetSizeA(const Arguments &args) { return args.m * args.k; } static size_t GetSizeB(const Arguments &args) { return args.n * args.k; } static size_t GetSizeC(const Arguments &args) { return args.m * args.n; } static size_t GetSizeTemp(const Arguments &) { return 1; } // N/A for this kernel // Sets the tuning parameters and their possible values static void SetParameters(cltune::Tuner &tuner, const size_t id) { if (V==1) { // limited subset of tuning parameters - but explorable exhaustively tuner.AddParameter(id, "WGD", {8, 16, 32}); tuner.AddParameter(id, "MDIMCD", {8, 16, 32}); tuner.AddParameter(id, "NDIMCD", {8, 16, 32}); tuner.AddParameter(id, "MDIMAD", {8, 16, 32}); tuner.AddParameter(id, "NDIMBD", {8, 16, 32}); tuner.AddParameter(id, "KWID", {2}); tuner.AddParameter(id, "VWMD", {1, 2, 4, 8}); tuner.AddParameter(id, "VWND", {1, 2, 4, 8}); tuner.AddParameter(id, "PADA", {1}); tuner.AddParameter(id, "PADB", {1}); } // a lot more tuning parameters - has to be sampled randomly, too much to test all else { tuner.AddParameter(id, "WGD", {8, 16, 32, 64, 128}); tuner.AddParameter(id, "MDIMCD", {8, 16, 32}); tuner.AddParameter(id, "NDIMCD", {8, 16, 32}); tuner.AddParameter(id, "MDIMAD", {8, 16, 32}); tuner.AddParameter(id, "NDIMBD", {8, 16, 32}); tuner.AddParameter(id, "KWID", {2, 8, 16}); tuner.AddParameter(id, "VWMD", {1, 2, 4, 8}); tuner.AddParameter(id, "VWND", {1, 2, 4, 8}); tuner.AddParameter(id, "PADA", {0, 1}); tuner.AddParameter(id, "PADB", {0, 1}); } } // Sets the constraints static void SetConstraints(cltune::Tuner &tuner, const size_t id) { auto MultipleOfX = [] (std::vector v) { return IsMultiple(v[0], v[1]); }; auto MultipleOfXMulY = [] (std::vector v) { return IsMultiple(v[0], v[1]*v[2]); }; auto MultipleOfXMulYDivZ = [] (std::vector v) { return IsMultiple(v[0], (v[1]*v[2])/v[3]); }; // Requirement for unrolling the WGD loop tuner.AddConstraint(id, MultipleOfX, {"WGD", "KWID"}); // Required for integer MWID and NWID tuner.AddConstraint(id, MultipleOfXMulY, {"WGD", "MDIMCD", "VWMD"}); tuner.AddConstraint(id, MultipleOfXMulY, {"WGD", "NDIMCD", "VWND"}); // Required for integer MWIAD and NWIBD tuner.AddConstraint(id, MultipleOfXMulY, {"WGD", "MDIMAD", "VWMD"}); tuner.AddConstraint(id, MultipleOfXMulY, {"WGD", "NDIMBD", "VWND"}); // WGD has to be a multiple of KDIMAD = ((MDIMCD*NDIMCD)/(MDIMAD)) and KDIMBD = (...) tuner.AddConstraint(id, MultipleOfXMulYDivZ, {"WGD", "MDIMCD", "NDIMCD", "MDIMAD"}); tuner.AddConstraint(id, MultipleOfXMulYDivZ, {"WGD", "MDIMCD", "NDIMCD", "NDIMBD"}); // Extra constraints for variation 1 to limit the set of options significantly if (V==1) { auto IsEqual = [] (std::vector v) { return v[0] == v[1]; }; tuner.AddConstraint(id, IsEqual, {"MDIMCD", "MDIMAD"}); tuner.AddConstraint(id, IsEqual, {"NDIMCD", "NDIMBD"}); } } // Sets the local memory size static void SetLocalMemorySize(cltune::Tuner &tuner, const size_t id, const Arguments &args) { auto LocalMemorySize = [args] (std::vector v) { return ((v[0]*(v[0] + v[1]) + v[0]*(v[0] + v[2]))*GetBytes(args.precision)); }; tuner.SetLocalMemoryUsage(id, LocalMemorySize, {"WGD", "PADA", "PADB"}); } // Sets the base thread configuration static std::vector GlobalSize(const Arguments &args) { return {args.m, args.n}; } static std::vector GlobalSizeRef(const Arguments &args) { return GlobalSize(args); } static std::vector LocalSize() { return {1, 1}; } static std::vector LocalSizeRef() { return {8, 8}; } // Transforms the thread configuration based on the parameters using TransformVector = std::vector>; static TransformVector MulLocal() { return {{"MDIMCD", "NDIMCD"}}; } static TransformVector DivLocal() { return {}; } static TransformVector MulGlobal() { return {{"MDIMCD", "NDIMCD"}}; } static TransformVector DivGlobal() { return {{"WGD", "WGD"}}; } // Sets the kernel's arguments static void SetArguments(cltune::Tuner &tuner, const Arguments &args, std::vector &, std::vector &, std::vector &a_mat, std::vector &b_mat, std::vector &c_mat, std::vector &) { tuner.AddArgumentScalar(static_cast(args.m)); tuner.AddArgumentScalar(static_cast(args.n)); tuner.AddArgumentScalar(static_cast(args.k)); tuner.AddArgumentScalar(GetRealArg(args.alpha)); tuner.AddArgumentScalar(GetRealArg(args.beta)); tuner.AddArgumentInput(a_mat); tuner.AddArgumentScalar(0); // a_offset tuner.AddArgumentScalar(static_cast(args.k)); // a_ld tuner.AddArgumentInput(b_mat); tuner.AddArgumentScalar(0); // b_offset tuner.AddArgumentScalar(static_cast(args.n)); // b_ld tuner.AddArgumentOutput(c_mat); tuner.AddArgumentScalar(0); // c_offset tuner.AddArgumentScalar(static_cast(args.n)); // c_ld tuner.AddArgumentScalar(1); // c_do_transpose tuner.AddArgumentScalar(0); // a_conjugate tuner.AddArgumentScalar(0); // b_conjugate } // Describes how to compute the performance metrics static size_t GetMetric(const Arguments &args) { return 2 * args.m * args.n * args.k; } static std::string PerformanceUnit() { return "GFLOPS"; } // Returns which Heuristic to run static size_t GetCurrentHeuristic(const Arguments &args){ // Multi Search Strategy is enable if( args.multi_search_strategy){ if( V == 1){ return size_t{0}; } else{ return args.heuristic_selection; } } // Use full-search to explore all parameter combinations or random-search to search only a part of // the parameter values. The fraction is set as a command-line argument. if (args.fraction == 1.0 || args.fraction == 0.0) { return size_t{0}; // Full search } else { return args.heuristic_selection; } } }; // ================================================================================================= } // namespace clblast // Shortcuts to the clblast namespace using half = clblast::half; using float2 = clblast::float2; using double2 = clblast::double2; // Function to tune a specific variation V (not within the clblast namespace) template void StartVariation(int argc, char *argv[]) { const auto command_line_args = clblast::RetrieveCommandLineArguments(argc, argv); switch(clblast::GetPrecision(command_line_args)) { case clblast::Precision::kHalf: clblast::Tuner, half>(argc, argv); break; case clblast::Precision::kSingle: clblast::Tuner, float>(argc, argv); break; case clblast::Precision::kDouble: clblast::Tuner, double>(argc, argv); break; case clblast::Precision::kComplexSingle: clblast::Tuner, float2>(argc, argv); break; case clblast::Precision::kComplexDouble: clblast::Tuner, double2>(argc, argv); break; } } // Test multiple heuristics if kArgMultiSearchStrategy is enabled // Otherwise, run the heuristic specified in kArgMultiSearchStrategy void TestHeuristic(int argc, char *argv[]){ auto command_line_args = clblast::RetrieveCommandLineArguments(argc, argv); auto help = std::string{""}; auto heuristic_selected = clblast::GetArgument(command_line_args, help, clblast::kArgMultiSearchStrategy, 0); auto multi_search_strategy = clblast::GetArgument(command_line_args, help, clblast::kArgMultiSearchStrategy, 0); if(multi_search_strategy){ StartVariation<1>(argc, argv); StartVariation<2>(argc, argv); } else { switch(heuristic_selected){ case 1: case 2: case 3: StartVariation<2>(argc, argv); break; case 0: default: StartVariation<1>(argc, argv); break; } } } // Main function (not within the clblast namespace) int main(int argc, char *argv[]) { StartVariation<1>(argc, argv); StartVariation<2>(argc, argv); return 0; } // =================================================================================================