// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file uses the auto-tuner to tune the xgemv OpenCL kernels. Three variants are tuned: // 1: The full version of the kernel // 2: The fast version for non-transposed matrices // 3: The fast version for transposed matrices // // ================================================================================================= #include #include #include "utilities/utilities.hpp" #include "tuning/tuning.hpp" namespace clblast { // ================================================================================================= // Settings for this kernel (default command-line arguments) TunerDefaults XgemvGetTunerDefaults(const int) { auto settings = TunerDefaults(); settings.options = {kArgM, kArgN, kArgAlpha, kArgBeta}; settings.default_m = 2048; settings.default_n = 2048; settings.default_num_runs = 4; return settings; } // Settings for this kernel (general) template TunerSettings XgemvGetTunerSettings(const int V, const Arguments &args) { auto settings = TunerSettings(); // Identification of the kernel settings.kernel_family = (V==1) ? "xgemv" : ((V==2) ? "xgemv_fast" : "xgemv_fast_rot"); settings.kernel_name = (V==1) ? "Xgemv" : ((V==2) ? "XgemvFast" : "XgemvFastRot"); settings.sources = #include "../src/kernels/level2/xgemv.opencl" #include "../src/kernels/level2/xgemv_fast.opencl" ; // Buffer sizes settings.size_x = args.n; settings.size_y = args.m; settings.size_a = args.m * args.n; // Inputs and outputs IDs (X:0, Y:1, A:2, B:3, C:4, temp:5) settings.inputs = {0, 1, 2}; settings.outputs = {1}; // Sets the base thread configuration settings.global_size = {args.m}; settings.global_size_ref = settings.global_size; settings.local_size = {1}; settings.local_size_ref = {64}; // Transforms the thread configuration based on the parameters settings.mul_local = {{"WGS"+std::to_string(V)}}; settings.div_global = (V==1 || V==2) ? TransformVector{{"WPT"+std::to_string(V)}} : TransformVector{}; // Sets the tuning parameters and their possible values if (V==1) { settings.parameters = { {"WGS"+std::to_string(V), {32, 64, 128, 256}}, {"WPT"+std::to_string(V), {1, 2, 4}}, }; } if (V==2) { settings.parameters = { {"WGS"+std::to_string(V), {16, 32, 64, 128, 256}}, {"WPT"+std::to_string(V), {1, 2, 4}}, {"VW"+std::to_string(V), {1, 2, 4, 8}}, }; } if (V==3) { settings.parameters = { {"WGS"+std::to_string(V), {16, 32, 64, 128}}, {"WPT"+std::to_string(V), {1, 2, 4, 8, 16, 32}}, {"VW"+std::to_string(V), {1, 2, 4, 8}}, }; } // Describes how to compute the performance metrics settings.metric_amount = (args.m*args.n + 2*args.m + args.n) * GetBytes(args.precision); settings.performance_unit = "GB/s"; return settings; } // Tests for valid arguments template void XgemvTestValidArguments(const int, const Arguments &) { } std::vector XgemvSetConstraints(const int V) { auto constraints = std::vector(); if (V==2 || V==3) { auto MultipleOfX = [] (std::vector v) { return IsMultiple(v[0], v[1]); }; constraints.push_back({MultipleOfX, {"WPT"+std::to_string(V), "VW"+std::to_string(V)}}); } if (V==3) { auto LargerOrEqual = [] (std::vector v) { return v[0] >= v[1]; }; constraints.push_back({LargerOrEqual, {"WGS"+std::to_string(V), "WPT"+std::to_string(V)}}); } return constraints; } template LocalMemSizeInfo XgemvComputeLocalMemSize(const int V) { if (V == 1 || V == 2) { return { [V] (std::vector v) -> size_t { return GetBytes(PrecisionValue()) * v[0]; }, {"WGS" + std::to_string(V)} }; } return { [V] (std::vector v) -> size_t { return GetBytes(PrecisionValue()) * (v[0] + v[1] * v[2]); }, {"WGS3", "WPT3", "WGS3"} }; } // Sets the kernel's arguments template void XgemvSetArguments(const int V, Kernel &kernel, const Arguments &args, std::vector>& buffers) { auto a_rotated = (V==3) ? 1 : 0; kernel.SetArgument(0, static_cast(args.m)); kernel.SetArgument(1, static_cast(args.n)); kernel.SetArgument(2, GetRealArg(args.alpha)); kernel.SetArgument(3, GetRealArg(args.beta)); kernel.SetArgument(4, a_rotated); kernel.SetArgument(5, buffers[2]()); // 2 == A matrix kernel.SetArgument(6, 0); kernel.SetArgument(7, static_cast(args.m)); kernel.SetArgument(8, buffers[0]()); // 0 == X vector kernel.SetArgument(9, 0); kernel.SetArgument(10, 1); kernel.SetArgument(11, buffers[1]()); // 1 == Y vector kernel.SetArgument(12, 0); kernel.SetArgument(13, 1); kernel.SetArgument(14, 0); // Conjugate transpose kernel.SetArgument(15, 0); // Additional parameter kernel.SetArgument(16, 0); // Banded 'kl' kernel.SetArgument(17, 0); // Banded 'ku' } // ================================================================================================= } // namespace clblast