// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements a class with static methods to describe the Xgerc routine. Examples of // such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These // static methods are used by the correctness tester and the performance tester. // // ================================================================================================= #ifndef CLBLAST_TEST_ROUTINES_XGERC_H_ #define CLBLAST_TEST_ROUTINES_XGERC_H_ #include #include #ifdef CLBLAST_REF_CLBLAS #include "test/wrapper_clblas.hpp" #endif #ifdef CLBLAST_REF_CBLAS #include "test/wrapper_cblas.hpp" #endif namespace clblast { // ================================================================================================= // See comment at top of file for a description of the class template class TestXgerc { public: // The BLAS level: 1, 2, or 3 static size_t BLASLevel() { return 2; } // The list of arguments relevant for this routine static std::vector GetOptions() { return {kArgM, kArgN, kArgLayout, kArgALeadDim, kArgXInc, kArgYInc, kArgAOffset, kArgXOffset, kArgYOffset, kArgAlpha}; } // Describes how to obtain the sizes of the buffers static size_t GetSizeX(const Arguments &args) { return args.m * args.x_inc + args.x_offset; } static size_t GetSizeY(const Arguments &args) { return args.n * args.y_inc + args.y_offset; } static size_t GetSizeA(const Arguments &args) { auto a_rotated = (args.layout == Layout::kRowMajor); auto a_two = (a_rotated) ? args.m : args.n; return a_two * args.a_ld + args.a_offset; } // Describes how to set the sizes of all the buffers static void SetSizes(Arguments &args) { args.a_size = GetSizeA(args); args.x_size = GetSizeX(args); args.y_size = GetSizeY(args); } // Describes what the default values of the leading dimensions of the matrices are static size_t DefaultLDA(const Arguments &args) { return args.n; } static size_t DefaultLDB(const Arguments &) { return 1; } // N/A for this routine static size_t DefaultLDC(const Arguments &) { return 1; } // N/A for this routine // Describes which transpose options are relevant for this routine using Transposes = std::vector; static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine // Describes how to run the CLBlast routine static StatusCode RunRoutine(const Arguments &args, Buffers &buffers, Queue &queue) { auto queue_plain = queue(); auto event = cl_event{}; auto status = Gerc(args.layout, args.m, args.n, args.alpha, buffers.x_vec(), args.x_offset, args.x_inc, buffers.y_vec(), args.y_offset, args.y_inc, buffers.a_mat(), args.a_offset, args.a_ld, &queue_plain, &event); if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); } return status; } // Describes how to run the clBLAS routine (for correctness/performance comparison) #ifdef CLBLAST_REF_CLBLAS static StatusCode RunReference1(const Arguments &args, Buffers &buffers, Queue &queue) { auto queue_plain = queue(); auto event = cl_event{}; auto status = clblasXgerc(convertToCLBLAS(args.layout), args.m, args.n, args.alpha, buffers.x_vec, args.x_offset, args.x_inc, buffers.y_vec, args.y_offset, args.y_inc, buffers.a_mat, args.a_offset, args.a_ld, 1, &queue_plain, 0, nullptr, &event); clWaitForEvents(1, &event); return static_cast(status); } #endif // Describes how to run the CPU BLAS routine (for correctness/performance comparison) #ifdef CLBLAST_REF_CBLAS static StatusCode RunReference2(const Arguments &args, Buffers &buffers, Queue &queue) { std::vector a_mat_cpu(args.a_size, static_cast(0)); std::vector x_vec_cpu(args.x_size, static_cast(0)); std::vector y_vec_cpu(args.y_size, static_cast(0)); buffers.a_mat.Read(queue, args.a_size, a_mat_cpu); buffers.x_vec.Read(queue, args.x_size, x_vec_cpu); buffers.y_vec.Read(queue, args.y_size, y_vec_cpu); cblasXgerc(convertToCBLAS(args.layout), args.m, args.n, args.alpha, x_vec_cpu, args.x_offset, args.x_inc, y_vec_cpu, args.y_offset, args.y_inc, a_mat_cpu, args.a_offset, args.a_ld); buffers.a_mat.Write(queue, args.a_size, a_mat_cpu); return StatusCode::kSuccess; } #endif // Describes how to download the results of the computation (more importantly: which buffer) static std::vector DownloadResult(const Arguments &args, Buffers &buffers, Queue &queue) { std::vector result(args.a_size, static_cast(0)); buffers.a_mat.Read(queue, args.a_size, result); return result; } // Describes how to compute the indices of the result buffer static size_t ResultID1(const Arguments &args) { return args.m; } static size_t ResultID2(const Arguments &args) { return args.n; } static size_t GetResultIndex(const Arguments &args, const size_t id1, const size_t id2) { return (args.layout == Layout::kRowMajor) ? id1*args.a_ld + id2 + args.a_offset: id2*args.a_ld + id1 + args.a_offset; } // Describes how to compute performance metrics static size_t GetFlops(const Arguments &args) { return 2 * args.m * args.n; } static size_t GetBytes(const Arguments &args) { return (2*args.m*args.n + args.m + args.n) * sizeof(T); } }; // ================================================================================================= } // namespace clblast // CLBLAST_TEST_ROUTINES_XGERC_H_ #endif