// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements a class with static methods to describe the Xsyr2k routine. Examples of // such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These // static methods are used by the correctness tester and the performance tester. // // ================================================================================================= #ifndef CLBLAST_TEST_ROUTINES_XSYR2K_H_ #define CLBLAST_TEST_ROUTINES_XSYR2K_H_ #include #include #ifdef CLBLAST_REF_CLBLAS #include "test/wrapper_clblas.hpp" #endif #ifdef CLBLAST_REF_CBLAS #include "test/wrapper_cblas.hpp" #endif namespace clblast { // ================================================================================================= // See comment at top of file for a description of the class template class TestXsyr2k { public: // The BLAS level: 1, 2, or 3 static size_t BLASLevel() { return 3; } // The list of arguments relevant for this routine static std::vector GetOptions() { return {kArgN, kArgK, kArgLayout, kArgTriangle, kArgATransp, kArgALeadDim, kArgBLeadDim, kArgCLeadDim, kArgAOffset, kArgBOffset, kArgCOffset, kArgAlpha, kArgBeta}; } // Describes how to obtain the sizes of the buffers static size_t GetSizeA(const Arguments &args) { auto a_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) || (args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo); auto a_two = (a_rotated) ? args.n : args.k; return a_two * args.a_ld + args.a_offset; } static size_t GetSizeB(const Arguments &args) { auto b_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) || (args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo); auto b_two = (b_rotated) ? args.n : args.k; return b_two * args.b_ld + args.b_offset; } static size_t GetSizeC(const Arguments &args) { return args.n * args.c_ld + args.c_offset; } // Describes how to set the sizes of all the buffers static void SetSizes(Arguments &args) { args.a_size = GetSizeA(args); args.b_size = GetSizeB(args); args.c_size = GetSizeC(args); } // Describes what the default values of the leading dimensions of the matrices are static size_t DefaultLDA(const Arguments &args) { return args.k; } static size_t DefaultLDB(const Arguments &args) { return args.k; } static size_t DefaultLDC(const Arguments &args) { return args.n; } // Describes which transpose options are relevant for this routine using Transposes = std::vector; static Transposes GetATransposes(const Transposes &) { return {Transpose::kNo, Transpose::kYes}; } static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine // Describes how to run the CLBlast routine static StatusCode RunRoutine(const Arguments &args, Buffers &buffers, Queue &queue) { auto queue_plain = queue(); auto event = cl_event{}; auto status = Syr2k(args.layout, args.triangle, args.a_transpose, args.n, args.k, args.alpha, buffers.a_mat(), args.a_offset, args.a_ld, buffers.b_mat(), args.b_offset, args.b_ld, args.beta, buffers.c_mat(), args.c_offset, args.c_ld, &queue_plain, &event); clWaitForEvents(1, &event); return status; } // Describes how to run the clBLAS routine (for correctness/performance comparison) #ifdef CLBLAST_REF_CLBLAS static StatusCode RunReference1(const Arguments &args, Buffers &buffers, Queue &queue) { auto queue_plain = queue(); auto event = cl_event{}; auto status = clblasXsyr2k(convertToCLBLAS(args.layout), convertToCLBLAS(args.triangle), convertToCLBLAS(args.a_transpose), args.n, args.k, args.alpha, buffers.a_mat, args.a_offset, args.a_ld, buffers.b_mat, args.b_offset, args.b_ld, args.beta, buffers.c_mat, args.c_offset, args.c_ld, 1, &queue_plain, 0, nullptr, &event); clWaitForEvents(1, &event); return static_cast(status); } #endif // Describes how to run the CPU BLAS routine (for correctness/performance comparison) #ifdef CLBLAST_REF_CBLAS static StatusCode RunReference2(const Arguments &args, Buffers &buffers, Queue &queue) { std::vector a_mat_cpu(args.a_size, static_cast(0)); std::vector b_mat_cpu(args.b_size, static_cast(0)); std::vector c_mat_cpu(args.c_size, static_cast(0)); buffers.a_mat.Read(queue, args.a_size, a_mat_cpu); buffers.b_mat.Read(queue, args.b_size, b_mat_cpu); buffers.c_mat.Read(queue, args.c_size, c_mat_cpu); cblasXsyr2k(convertToCBLAS(args.layout), convertToCBLAS(args.triangle), convertToCBLAS(args.a_transpose), args.n, args.k, args.alpha, a_mat_cpu, args.a_offset, args.a_ld, b_mat_cpu, args.b_offset, args.b_ld, args.beta, c_mat_cpu, args.c_offset, args.c_ld); buffers.c_mat.Write(queue, args.c_size, c_mat_cpu); return StatusCode::kSuccess; } #endif // Describes how to download the results of the computation (more importantly: which buffer) static std::vector DownloadResult(const Arguments &args, Buffers &buffers, Queue &queue) { std::vector result(args.c_size, static_cast(0)); buffers.c_mat.Read(queue, args.c_size, result); return result; } // Describes how to compute the indices of the result buffer static size_t ResultID1(const Arguments &args) { return args.n; } static size_t ResultID2(const Arguments &args) { return args.n; } static size_t GetResultIndex(const Arguments &args, const size_t id1, const size_t id2) { return id1*args.c_ld + id2 + args.c_offset; } // Describes how to compute performance metrics static size_t GetFlops(const Arguments &args) { return 2 * args.n * args.n * args.k; } static size_t GetBytes(const Arguments &args) { return (args.n*args.k + args.n*args.n) * sizeof(T); } }; // ================================================================================================= } // namespace clblast // CLBLAST_TEST_ROUTINES_XSYR2K_H_ #endif