// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements a class with static methods to describe the XaxpyBatched routine. Examples of // such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These // static methods are used by the correctness tester and the performance tester. // // ================================================================================================= #ifndef CLBLAST_TEST_ROUTINES_XAXPYBATCHED_H_ #define CLBLAST_TEST_ROUTINES_XAXPYBATCHED_H_ #include #include #include "utilities/utilities.hpp" #ifdef CLBLAST_REF_CLBLAS #include "test/wrapper_clblas.hpp" #endif #ifdef CLBLAST_REF_CBLAS #include "test/wrapper_cblas.hpp" #endif namespace clblast { // ================================================================================================= // See comment at top of file for a description of the class template class TestXaxpyBatched { public: // Although it is a non-BLAS routine, it can still be tested against level-1 routines in a loop static size_t BLASLevel() { return 1; } // The list of arguments relevant for this routine static std::vector GetOptions() { return {kArgN, kArgXInc, kArgYInc, kArgBatchCount, kArgAlpha}; } // Helper to determine a different alpha value per batch static T GetAlpha(const T alpha_base, const size_t batch_id) { return alpha_base + Constant(batch_id); } // Describes how to obtain the sizes of the buffers (per item, not for the full batch) static size_t GetSizeX(const Arguments &args) { return args.n * args.x_inc; } static size_t GetSizeY(const Arguments &args) { return args.n * args.y_inc; } // Describes how to set the sizes of all the buffers (per item, not for the full batch) static void SetSizes(Arguments &args) { args.x_size = GetSizeX(args); args.y_size = GetSizeY(args); } // Describes what the default values of the leading dimensions of the matrices are static size_t DefaultLDA(const Arguments &) { return 1; } // N/A for this routine static size_t DefaultLDB(const Arguments &) { return 1; } // N/A for this routine static size_t DefaultLDC(const Arguments &) { return 1; } // N/A for this routine // Describes which transpose options are relevant for this routine using Transposes = std::vector; static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine // Describes how to prepare the input data static void PrepareData(const Arguments&, Queue&, const int, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&) {} // N/A for this routine // Describes how to run the CLBlast routine static StatusCode RunRoutine(const Arguments &args, std::vector> &buffers, Queue &queue) { auto queue_plain = queue(); auto event = cl_event{}; auto alphas = std::vector(); auto x_buffers = std::vector(); auto y_buffers = std::vector(); for (auto batch = size_t{0}; batch < args.batch_count; ++batch) { alphas.push_back(GetAlpha(args.alpha, batch)); x_buffers.push_back(buffers[batch].x_vec()); y_buffers.push_back(buffers[batch].y_vec()); } auto status = AxpyBatched(args.n, alphas.data(), x_buffers.data(), args.x_inc, y_buffers.data(), args.y_inc, args.batch_count, &queue_plain, &event); if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); } return status; } // Describes how to run the clBLAS routine (for correctness/performance comparison) #ifdef CLBLAST_REF_CLBLAS static StatusCode RunReference1(const Arguments &args, std::vector> &buffers, Queue &queue) { auto queue_plain = queue(); for (auto batch = size_t{0}; batch < args.batch_count; ++batch) { auto event = cl_event{}; auto status = clblasXaxpy(args.n, GetAlpha(args.alpha, batch), buffers[batch].x_vec, 0, args.x_inc, buffers[batch].y_vec, 0, args.y_inc, 1, &queue_plain, 0, nullptr, &event); clWaitForEvents(1, &event); if (static_cast(status) != StatusCode::kSuccess) { return static_cast(status); } } return StatusCode::kSuccess; } #endif // Describes how to run the CPU BLAS routine (for correctness/performance comparison) #ifdef CLBLAST_REF_CBLAS static StatusCode RunReference2(const Arguments &args, std::vector> &buffers, Queue &queue) { for (auto batch = size_t{0}; batch < args.batch_count; ++batch) { std::vector x_vec_cpu(args.x_size, static_cast(0)); std::vector y_vec_cpu(args.y_size, static_cast(0)); buffers[batch].x_vec.Read(queue, args.x_size, x_vec_cpu); buffers[batch].y_vec.Read(queue, args.y_size, y_vec_cpu); cblasXaxpy(args.n, GetAlpha(args.alpha, batch), x_vec_cpu, 0, args.x_inc, y_vec_cpu, 0, args.y_inc); buffers[batch].y_vec.Write(queue, args.y_size, y_vec_cpu); } return StatusCode::kSuccess; } #endif // Describes how to download the results of the computation (per item, not for the full batch) static std::vector DownloadResult(const Arguments &args, Buffers &buffers, Queue &queue) { std::vector result(args.y_size, static_cast(0)); buffers.y_vec.Read(queue, args.y_size, result); return result; } // Describes how to compute the indices of the result buffer (per item, not for the full batch) static size_t ResultID1(const Arguments &args) { return args.n; } static size_t ResultID2(const Arguments &) { return 1; } // N/A for this routine static size_t GetResultIndex(const Arguments &args, const size_t id1, const size_t) { return id1 * args.y_inc; } // Describes how to compute performance metrics (per item, not for the full batch) static size_t GetFlops(const Arguments &args) { return 2 * args.n; } static size_t GetBytes(const Arguments &args) { return (3 * args.n) * sizeof(T); } }; // ================================================================================================= } // namespace clblast // CLBLAST_TEST_ROUTINES_XAXPYBATCHED_H_ #endif