// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements a class with static methods to describe the Xconvgemm routine. Examples of // such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These // static methods are used by the correctness tester and the performance tester. // // ================================================================================================= #ifndef CLBLAST_TEST_ROUTINES_XCONVGEMM_H_ #define CLBLAST_TEST_ROUTINES_XCONVGEMM_H_ #include "test/routines/common.hpp" namespace clblast { // ================================================================================================= // See comment at top of file for a description of the class template class TestXconvgemm { public: // The BLAS level: 4 for the extra routines static size_t BLASLevel() { return 4; } // The list of arguments relevant for this routine static std::vector GetOptions() { return {kArgKernelMode, kArgChannels, kArgHeight, kArgWidth, kArgKernelH, kArgKernelW, kArgPadH, kArgPadW, kArgStrideH, kArgStrideW, kArgDilationH, kArgDilationW, kArgNumKernels, kArgBatchCount, kArgAOffset, kArgBOffset, kArgCOffset}; } static std::vector BuffersIn() { return {kBufMatA, kBufMatB, kBufMatC}; } static std::vector BuffersOut() { return {kBufMatC}; } // Describes how to obtain the sizes of the buffers static size_t OutputHeight(const Arguments &args) { const auto size = args.height + 2 * args.pad_h; const auto padding = args.dilation_h * (args.kernel_h - 1) + 1; if (size >= padding) { return (size - padding) / args.stride_h + 1; } return 1; } static size_t OutputWidth(const Arguments &args) { const auto size = args.width + 2 * args.pad_w; const auto padding = args.dilation_w * (args.kernel_w - 1) + 1; if (size >= padding) { return (size - padding) / args.stride_w + 1; } return 1; } static size_t NumPatches(const Arguments &args) { return OutputHeight(args) * OutputWidth(args) * args.channels; } static size_t GetSizeA(const Arguments &args) { // 4D: NCHW == batch-channel-height-width return args.batch_count * args.channels * args.height * args.width + args.a_offset; } static size_t GetSizeB(const Arguments &args) { // 4D: KCHW == kernel-channel-height-width return args.num_kernels * args.channels * args.kernel_h * args.kernel_w + args.b_offset; } static size_t GetSizeC(const Arguments &args) { // 4D: NCHW == batch-channel-height-width return args.batch_count * args.num_kernels * OutputHeight(args) * OutputWidth(args) + args.c_offset; } // Describes how to set the sizes of all the buffers static void SetSizes(Arguments &args, Queue&) { args.a_size = GetSizeA(args); args.b_size = GetSizeB(args); args.c_size = GetSizeC(args); } // Describes what the default values of the leading dimensions of the matrices are static size_t DefaultLDA(const Arguments &) { return 1; } // N/A for this routine static size_t DefaultLDB(const Arguments &) { return 1; } // N/A for this routine static size_t DefaultLDC(const Arguments &) { return 1; } // N/A for this routine // Describes which transpose options are relevant for this routine using Transposes = std::vector; static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine // Describes how to prepare the input data static void PrepareData(const Arguments&, Queue&, const int, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&) {} // N/A for this routine // Describes how to run the CLBlast routine static StatusCode RunRoutine(const Arguments &args, Buffers &buffers, Queue &queue) { #ifdef OPENCL_API auto queue_plain = queue(); auto event = cl_event{}; auto status = Convgemm(args.kernel_mode, args.channels, args.height, args.width, args.kernel_h, args.kernel_w, args.pad_h, args.pad_w, args.stride_h, args.stride_w, args.dilation_h, args.dilation_w, args.num_kernels, args.batch_count, buffers.a_mat(), args.a_offset, buffers.b_mat(), args.b_offset, buffers.c_mat(), args.c_offset, &queue_plain, &event); if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); } #elif CUDA_API auto status = Convgemm(args.kernel_mode, args.channels, args.height, args.width, args.kernel_h, args.kernel_w, args.pad_h, args.pad_w, args.stride_h, args.stride_w, args.dilation_h, args.dilation_w, args.num_kernels, args.batch_count, buffers.a_mat(), args.a_offset, buffers.b_mat(), args.b_offset, buffers.c_mat(), args.c_offset, queue.GetContext()(), queue.GetDevice()()); cuStreamSynchronize(queue()); #endif return status; } // Describes how to run a naive version of the routine (for correctness/performance comparison). // Note that a proper clBLAS or CPU BLAS comparison is not available for non-BLAS routines. static StatusCode RunReference1(const Arguments &args, Buffers &buffers, Queue &queue) { auto buffers_host = BuffersHost(); DeviceToHost(args, buffers, buffers_host, queue, BuffersIn()); const auto status = RunReference(args, buffers_host); HostToDevice(args, buffers, buffers_host, queue, BuffersOut()); return status; } static StatusCode RunReference2(const Arguments &args, BuffersHost &buffers_host, Queue&) { return RunReference(args, buffers_host); } static StatusCode RunReference3(const Arguments &, BuffersCUDA &, Queue &) { return StatusCode::kUnknownError; } // Describes how to download the results of the computation (more importantly: which buffer) static std::vector DownloadResult(const Arguments &args, Buffers &buffers, Queue &queue) { std::vector result(args.c_size, static_cast(0)); buffers.c_mat.Read(queue, args.c_size, result); return result; } // Describes how to compute the indices of the result buffer static size_t ResultID1(const Arguments &args) { return OutputHeight(args) * OutputWidth(args); } static size_t ResultID2(const Arguments &args) { return args.num_kernels * args.batch_count; } static size_t GetResultIndex(const Arguments &args, const size_t id1, const size_t id2) { return id1 + OutputHeight(args) * OutputWidth(args) * id2 + args.c_offset; } // Describes how to compute performance metrics static size_t GetFlops(const Arguments &args) { const auto patch_size = args.kernel_h * args.kernel_w * args.channels; const auto num_patches = OutputHeight(args) * OutputWidth(args); return args.batch_count * 2 * num_patches * args.num_kernels * patch_size; } static size_t GetBytes(const Arguments &args) { return (GetSizeA(args) + GetSizeB(args) + GetSizeC(args)) * sizeof(T); } }; // ================================================================================================= template StatusCode RunReference(const Arguments &args, BuffersHost &buffers_host) { const auto output_h = TestXconvgemm::OutputHeight(args); const auto output_w = TestXconvgemm::OutputWidth(args); for (auto batch_id = size_t{0}; batch_id < args.batch_count; ++batch_id) { for (auto co_id = size_t{0}; co_id < args.num_kernels; ++co_id) { // output channels == num-kernels for (auto ho_id = size_t{0}; ho_id < output_h; ++ho_id) { // image height for (auto wo_id = size_t{0}; wo_id < output_w; ++wo_id) { // image width auto result = ConstantZero(); // 3D convolution for (auto ci_id = size_t{0}; ci_id < args.channels; ++ci_id) { // input channels for (auto kh_id = size_t{0}; kh_id < args.kernel_h; ++kh_id) { // kernel height for (auto kw_id = size_t{0}; kw_id < args.kernel_w; ++kw_id) { // kernel width // Retrieves the value from the input image const auto hi_id = kh_id * args.dilation_h + args.stride_h * ho_id - args.pad_h; const auto wi_id = kw_id * args.dilation_w + args.stride_w * wo_id - args.pad_w; if (hi_id >= 0 && hi_id < args.height && wi_id >= 0 && wi_id < args.width) { const auto input_index = wi_id + args.width * ( hi_id + args.height * ( ci_id + args.channels * ( batch_id))); const auto input_value = buffers_host.a_mat[input_index + args.a_offset]; // Multiplies with the kernel tensor const auto kernel_index = (args.kernel_mode == KernelMode::kConvolution) ? (args.kernel_w - kw_id - 1) + args.kernel_w * ( (args.kernel_h - kh_id - 1) + args.kernel_h * ( ci_id + args.channels * ( co_id))) : kw_id + args.kernel_w * ( kh_id + args.kernel_h * ( ci_id + args.channels * ( co_id))); const auto kernel_value = buffers_host.b_mat[kernel_index + args.b_offset]; result += input_value * kernel_value; } } } } // Sets the output value (NCHW == batch-channel-height-width) const auto output_index = wo_id + output_w * ( ho_id + output_h * ( co_id + args.num_kernels * ( batch_id))); buffers_host.c_mat[output_index + args.c_offset] = result; } } } } return StatusCode::kSuccess; } // Half-precision version calling the above reference implementation after conversions template <> StatusCode RunReference(const Arguments &args, BuffersHost &buffers_host) { auto a_buffer2 = HalfToFloatBuffer(buffers_host.a_mat); auto b_buffer2 = HalfToFloatBuffer(buffers_host.b_mat); auto c_buffer2 = HalfToFloatBuffer(buffers_host.c_mat); auto dummy = std::vector(0); auto buffers2 = BuffersHost{dummy, dummy, a_buffer2, b_buffer2, c_buffer2, dummy, dummy}; auto args2 = Arguments(); args2.a_size = args.a_size; args2.b_size = args.b_size; args2.c_size = args.c_size; args2.kernel_mode = args.kernel_mode; args2.channels = args.channels; args2.height = args.height; args2.width = args.width; args2.kernel_h = args.kernel_h; args2.kernel_w = args.kernel_w; args2.pad_h = args.pad_h; args2.pad_w = args.pad_w; args2.stride_h = args.stride_h; args2.stride_w = args.stride_w; args2.dilation_h = args.dilation_h; args2.dilation_w = args.dilation_w; args2.num_kernels = args.num_kernels; args2.batch_count = args.batch_count; args2.a_offset = args.a_offset; args2.b_offset = args.b_offset; args2.c_offset = args.c_offset; auto status = RunReference(args2, buffers2); FloatToHalfBuffer(buffers_host.c_mat, buffers2.c_mat); return status; } // ================================================================================================= } // namespace clblast // CLBLAST_TEST_ROUTINES_XCONVGEMM_H_ #endif