// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements a class with static methods to describe the Xhad routine. Examples of // such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These // static methods are used by the correctness tester and the performance tester. // // ================================================================================================= #ifndef CLBLAST_TEST_ROUTINES_XHAD_H_ #define CLBLAST_TEST_ROUTINES_XHAD_H_ #include "test/routines/common.hpp" namespace clblast { // ================================================================================================= template StatusCode RunReference(const Arguments &args, BuffersHost &buffers_host) { for (auto index = size_t{0}; index < args.n; ++index) { const auto x = buffers_host.x_vec[index * args.x_inc + args.x_offset]; const auto y = buffers_host.y_vec[index * args.y_inc + args.y_offset]; const auto z = buffers_host.c_mat[index]; // * args.z_inc + args.z_offset]; buffers_host.c_mat[index] = args.alpha * x * y + args.beta * z; } return StatusCode::kSuccess; } // Half-precision version calling the above reference implementation after conversions template <> StatusCode RunReference(const Arguments &args, BuffersHost &buffers_host) { auto x_buffer2 = HalfToFloatBuffer(buffers_host.x_vec); auto y_buffer2 = HalfToFloatBuffer(buffers_host.y_vec); auto c_buffer2 = HalfToFloatBuffer(buffers_host.c_mat); auto dummy = std::vector(0); auto buffers2 = BuffersHost{x_buffer2, y_buffer2, dummy, dummy, c_buffer2, dummy, dummy}; auto args2 = Arguments(); args2.x_size = args.x_size; args2.y_size = args.y_size; args2.c_size = args.c_size; args2.x_inc = args.x_inc; args2.y_inc = args.y_inc; args2.n = args.n; args2.x_offset = args.x_offset; args2.y_offset = args.y_offset; args2.alpha = HalfToFloat(args.alpha); args2.beta = HalfToFloat(args.beta); auto status = RunReference(args2, buffers2); FloatToHalfBuffer(buffers_host.c_mat, buffers2.c_mat); return status; } // ================================================================================================= // See comment at top of file for a description of the class template class TestXhad { public: // The BLAS level: 4 for the extra routines (note: tested with matrix-size values for 'n') static size_t BLASLevel() { return 4; } // The list of arguments relevant for this routine static std::vector GetOptions() { return {kArgN, kArgXInc, kArgYInc, kArgXOffset, kArgYOffset, kArgAlpha, kArgBeta}; } static std::vector BuffersIn() { return {kBufVecX, kBufVecY, kBufMatC}; } static std::vector BuffersOut() { return {kBufMatC}; } // Describes how to obtain the sizes of the buffers static size_t GetSizeX(const Arguments &args) { return args.n * args.x_inc + args.x_offset; } static size_t GetSizeY(const Arguments &args) { return args.n * args.y_inc + args.y_offset; } static size_t GetSizeC(const Arguments &args) { // used for 'vector z' return args.n; // * args.z_inc + args.z_offset; } // Describes how to set the sizes of all the buffers static void SetSizes(Arguments &args, Queue&) { args.x_size = GetSizeX(args); args.y_size = GetSizeY(args); args.c_size = GetSizeC(args); // used for 'vector z' } // Describes what the default values of the leading dimensions of the matrices are static size_t DefaultLDA(const Arguments &) { return 1; } // N/A for this routine static size_t DefaultLDB(const Arguments &) { return 1; } // N/A for this routine static size_t DefaultLDC(const Arguments &) { return 1; } // N/A for this routine // Describes which transpose options are relevant for this routine using Transposes = std::vector; static Transposes GetATransposes(const Transposes &) { return {}; } // N/A for this routine static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine // Describes how to prepare the input data static void PrepareData(const Arguments&, Queue&, const int, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&) {} // N/A for this routine // Describes how to run the CLBlast routine static StatusCode RunRoutine(const Arguments &args, Buffers &buffers, Queue &queue) { #ifdef OPENCL_API auto queue_plain = queue(); auto event = cl_event{}; auto status = Had(args.n, args.alpha, buffers.x_vec(), args.x_offset, args.x_inc, buffers.y_vec(), args.y_offset, args.y_inc, args.beta, buffers.c_mat(), 0, 1, // used for 'vector z' &queue_plain, &event); if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); } #elif CUDA_API auto status = Had(args.n, args.alpha, buffers.x_vec(), args.x_offset, args.x_inc, buffers.y_vec(), args.y_offset, args.y_inc, args.beta, buffers.c_mat(), 0, 1, // used for 'vector z' queue.GetContext()(), queue.GetDevice()()); cuStreamSynchronize(queue()); #endif return status; } // Describes how to run a naive version of the routine (for correctness/performance comparison). // Note that a proper clBLAS or CPU BLAS comparison is not available for non-BLAS routines. static StatusCode RunReference1(const Arguments &args, Buffers &buffers, Queue &queue) { auto buffers_host = BuffersHost(); DeviceToHost(args, buffers, buffers_host, queue, BuffersIn()); const auto status = RunReference(args, buffers_host); HostToDevice(args, buffers, buffers_host, queue, BuffersOut()); return status; } static StatusCode RunReference2(const Arguments &args, BuffersHost &buffers_host, Queue&) { return RunReference(args, buffers_host); } static StatusCode RunReference3(const Arguments &, BuffersCUDA &, Queue &) { return StatusCode::kUnknownError; } // Describes how to download the results of the computation (more importantly: which buffer) static std::vector DownloadResult(const Arguments &args, Buffers &buffers, Queue &queue) { std::vector result(args.c_size, static_cast(0)); buffers.c_mat.Read(queue, args.c_size, result); return result; } // Describes how to compute the indices of the result buffer static size_t ResultID1(const Arguments &args) { return args.n; } static size_t ResultID2(const Arguments &) { return 1; } // N/A for this routine static size_t GetResultIndex(const Arguments &args, const size_t id1, const size_t) { return id1; // * args.z_inc + args.z_offset; } // Describes how to compute performance metrics static size_t GetFlops(const Arguments &args) { return 4 * args.n; } static size_t GetBytes(const Arguments &args) { return (4 * args.n) * sizeof(T); } }; // ================================================================================================= } // namespace clblast // CLBLAST_TEST_ROUTINES_XHAD_H_ #endif