// ================================================================================================= // This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This // project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max- // width of 100 characters per line. // // Author(s): // Cedric Nugteren // // This file implements a class with static methods to describe the Xomatcopy routine. Examples of // such 'descriptions' are how to calculate the size a of buffer or how to run the routine. These // static methods are used by the correctness tester and the performance tester. // // ================================================================================================= #ifndef CLBLAST_TEST_ROUTINES_XOMATCOPY_H_ #define CLBLAST_TEST_ROUTINES_XOMATCOPY_H_ #include "test/routines/common.hpp" namespace clblast { // ================================================================================================= template StatusCode RunReference(const Arguments &args, BuffersHost &buffers_host) { // Checking for invalid arguments const auto a_rotated = (args.layout == Layout::kRowMajor); const auto b_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) || (args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo); const auto a_base = (a_rotated) ? args.a_ld*(args.m-1) + args.n : args.a_ld*(args.n-1) + args.m; const auto b_base = (b_rotated) ? args.b_ld*(args.m-1) + args.n : args.b_ld*(args.n-1) + args.m; if ((args.m == 0) || (args.n == 0)) { return StatusCode::kInvalidDimension; } if ((args.a_ld < args.m && !a_rotated) || (args.a_ld < args.n && a_rotated)) { return StatusCode::kInvalidLeadDimA; } if ((args.b_ld < args.m && !b_rotated) || (args.b_ld < args.n && b_rotated)) { return StatusCode::kInvalidLeadDimB; } if (buffers_host.a_mat.size() * sizeof(T) < (a_base + args.a_offset) * sizeof(T)) { return StatusCode::kInsufficientMemoryA; } if (buffers_host.b_mat.size() * sizeof(T) < (b_base + args.b_offset) * sizeof(T)) { return StatusCode::kInsufficientMemoryB; } // Matrix copy, scaling, and/or transpose for (auto id1 = size_t{0}; id1 < args.m; ++id1) { for (auto id2 = size_t{0}; id2 < args.n; ++id2) { const auto a_one = (a_rotated) ? id2 : id1; const auto a_two = (a_rotated) ? id1 : id2; const auto b_one = (b_rotated) ? id2 : id1; const auto b_two = (b_rotated) ? id1 : id2; const auto a_index = a_two * args.a_ld + a_one + args.a_offset; const auto b_index = b_two * args.b_ld + b_one + args.b_offset; buffers_host.b_mat[b_index] = args.alpha * buffers_host.a_mat[a_index]; } } return StatusCode::kSuccess; } // Half-precision version calling the above reference implementation after conversions template <> StatusCode RunReference(const Arguments &args, BuffersHost &buffers_host) { auto a_buffer2 = HalfToFloatBuffer(buffers_host.a_mat); auto b_buffer2 = HalfToFloatBuffer(buffers_host.b_mat); auto dummy = std::vector(0); auto buffers2 = BuffersHost{dummy, dummy, a_buffer2, b_buffer2, dummy, dummy, dummy}; auto args2 = Arguments(); args2.a_size = args.a_size; args2.b_size = args.b_size; args2.a_ld = args.a_ld; args2.b_ld = args.b_ld; args2.m = args.m; args2.n = args.n; args2.a_offset = args.a_offset; args2.b_offset = args.b_offset; args2.layout = args.layout; args2.a_transpose = args.a_transpose; args2.alpha = HalfToFloat(args.alpha); auto status = RunReference(args2, buffers2); FloatToHalfBuffer(buffers_host.b_mat, b_buffer2); return status; } // ================================================================================================= // See comment at top of file for a description of the class template class TestXomatcopy { public: // The BLAS level: 4 for the extra routines static size_t BLASLevel() { return 4; } // The list of arguments relevant for this routine static std::vector GetOptions() { return {kArgM, kArgN, kArgLayout, kArgATransp, kArgALeadDim, kArgBLeadDim, kArgAOffset, kArgBOffset, kArgAlpha}; } static std::vector BuffersIn() { return {kBufMatA, kBufMatB}; } static std::vector BuffersOut() { return {kBufMatB}; } // Describes how to obtain the sizes of the buffers static size_t GetSizeA(const Arguments &args) { const auto a_rotated = (args.layout == Layout::kRowMajor); const auto a_two = (a_rotated) ? args.m : args.n; return a_two * args.a_ld + args.a_offset; } static size_t GetSizeB(const Arguments &args) { const auto b_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) || (args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo); const auto b_two = (b_rotated) ? args.n : args.m; return b_two * args.b_ld + args.b_offset; } // Describes how to set the sizes of all the buffers static void SetSizes(Arguments &args) { args.a_size = GetSizeA(args); args.b_size = GetSizeB(args); } // Describes what the default values of the leading dimensions of the matrices are static size_t DefaultLDA(const Arguments &args) { return args.n; } static size_t DefaultLDB(const Arguments &args) { return args.m; } static size_t DefaultLDC(const Arguments &) { return 1; } // N/A for this routine // Describes which transpose options are relevant for this routine using Transposes = std::vector; static Transposes GetATransposes(const Transposes &all) { return all; } static Transposes GetBTransposes(const Transposes &) { return {}; } // N/A for this routine // Describes how to prepare the input data static void PrepareData(const Arguments&, Queue&, const int, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&, std::vector&) {} // N/A for this routine // Describes how to run the CLBlast routine static StatusCode RunRoutine(const Arguments &args, Buffers &buffers, Queue &queue) { auto queue_plain = queue(); auto event = cl_event{}; auto status = Omatcopy(args.layout, args.a_transpose, args.m, args.n, args.alpha, buffers.a_mat(), args.a_offset, args.a_ld, buffers.b_mat(), args.b_offset, args.b_ld, &queue_plain, &event); if (status == StatusCode::kSuccess) { clWaitForEvents(1, &event); clReleaseEvent(event); } return status; } // Describes how to run a naive version of the routine (for correctness/performance comparison). // Note that a proper clBLAS or CPU BLAS comparison is not available for non-BLAS routines. static StatusCode RunReference1(const Arguments &args, Buffers &buffers, Queue &queue) { auto buffers_host = BuffersHost(); DeviceToHost(args, buffers, buffers_host, queue, BuffersIn()); const auto status = RunReference(args, buffers_host); HostToDevice(args, buffers, buffers_host, queue, BuffersOut()); return status; } static StatusCode RunReference2(const Arguments &args, BuffersHost &buffers_host, Queue&) { return RunReference(args, buffers_host); } static StatusCode RunReference3(const Arguments &, BuffersCUDA &, Queue &) { return StatusCode::kUnknownError; } // Describes how to download the results of the computation (more importantly: which buffer) static std::vector DownloadResult(const Arguments &args, Buffers &buffers, Queue &queue) { std::vector result(args.b_size, static_cast(0)); buffers.b_mat.Read(queue, args.b_size, result); return result; } // Describes how to compute the indices of the result buffer static size_t ResultID1(const Arguments &args) { return args.m; } static size_t ResultID2(const Arguments &args) { return args.n; } static size_t GetResultIndex(const Arguments &args, const size_t id1, const size_t id2) { const auto b_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) || (args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo); const auto b_one = (b_rotated) ? id2 : id1; const auto b_two = (b_rotated) ? id1 : id2; return b_two * args.b_ld + b_one + args.b_offset; } // Describes how to compute performance metrics static size_t GetFlops(const Arguments &args) { return args.m*args.n; } static size_t GetBytes(const Arguments &args) { return (2*args.m*args.n) * sizeof(T); } }; // ================================================================================================= } // namespace clblast // CLBLAST_TEST_ROUTINES_XOMATCOPY_H_ #endif