summaryrefslogtreecommitdiff
path: root/external/clBLAS/src/library/blas/gens/gemv.c
blob: 40293d8bf107ec95ba99f6060ea14deb28fc427f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/* ************************************************************************
 * Copyright 2013 Advanced Micro Devices, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * ************************************************************************/


/*
 * gemv generator
 */

#include <string.h>
#include <stdio.h>
#include <assert.h>
#include <math.h>
#include <clblas_stddef.h>
#include <clBLAS.h>
#include <blas_mempat.h>
#include <clkern.h>
#include <clblas-internal.h>

#include "blas_kgen.h"
#include "xxmv_common.h"

typedef struct {
    size_t staggered;
} MAY_ALIAS extraData_t;

static const char *gemvDecl =
    "__attribute__((reqd_work_group_size(%lu, %lu, 1)))\n"
    "void __kernel\n"
    "%cgemv(\n"
    "    uint %c,\n"
    "    uint %c,\n"
    "    const %s alpha,\n"
    "    const __global %s *restrict A,\n"
    "    const __global %s *restrict X,\n"
    "%s"
    "    __global %s *Y,\n"
    "    uint lda"
    "%s"    // offset A, X and Y
    "%s"
    "%s)\n";

static CLBLASMpatExtra mpatExtra;

static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra);

static void
assignKargs(KernelArg *args, const void *params, const void *extra);

static void
fixupArgs(void *args, SubproblemDim *subdims, void *extra);

static SolverFlags
solverFlags(void);

static bool
isFitToLDS(
    SubproblemDim *dim,
    DataType dtype,
    cl_ulong ldsSize,
    const void *kernelArgs);

static void
calcNrThreads(
    size_t threads[2],
    const SubproblemDim *subdims,
    const PGranularity *pgran,
    const void *args,
    const void *extra);

static bool
subgCheckCalcDecomp(
    PGranularity *pgran,
    SubproblemDim *subdims,
    unsigned int subdimsNum,
    DataType dtype,
    int check);

static int
subgGetDefaultDecomp(
    PGranularity *pgran,
    SubproblemDim *subdims,
    unsigned int subdimsNum,
    void * pArgs);

static SolverOps gemvSops = {
    generator,
    assignKargs,
    isFitToLDS,
    NULL,
    NULL,
    calcNrThreads,
    NULL,
    solverFlags,
    fixupArgs,
    subgGetDefaultDecomp,//getDefaultDecomposition
    subgCheckCalcDecomp, //get Decomp. list
    NULL,
    NULL
};

static void
declareGemvKernel(
    struct KgenContext *ctx,
    DataType dtype,
    const PGranularity *pgran,
    KernelExtraFlags kflags)
{
    char sizeNames[2] = {'M', 'N'};
    bool incxOne = ((kflags & KEXTRA_INCX_ONE) != 0);
    bool incyOne = ((kflags & KEXTRA_INCY_ONE) != 0);
    bool beta0 = ((kflags & KEXTRA_BETA_ZERO) != 0);
    const char *incxDecl = incxOne ? "" : ",\n    const int incx";
    const char *incyDecl = incyOne ? "" : ",\n    const int incy";
    char offDecl[128];
    char betaDecl[128];
    char tmp[512];
    char fpref;
    bool tra = ((kflags & KEXTRA_TRANS_A) != 0);
    const char *typeName;

    typeName = dtypeBuiltinType(dtype);
    fpref = dtypeToBlasPrefix(dtype);

    offDecl[0] = '\0';
    if (kflags & KEXTRA_A_OFF_NOT_ZERO) {
        strcpy(offDecl, ",\n    const uint offA");
    }
    if (kflags & KEXTRA_BX_OFF_NOT_ZERO) {
        strcat(offDecl, ",\n    const uint offX");
    }
    if (kflags & KEXTRA_CY_OFF_NOT_ZERO) {
        strcat(offDecl, ",\n    const uint offY");
    }

    if (beta0) {
        betaDecl[0] = '\0';
    }
    else {
        sprintf(betaDecl, "    const %s beta,\n", typeName);
    }
    sprintf(tmp, gemvDecl, pgran->wgSize[0], pgran->wgSize[1], fpref,
            sizeNames[tra], sizeNames[1 - tra],
            typeName, typeName, typeName, betaDecl, typeName,
            offDecl, incxDecl, incyDecl);

    kgenDeclareFunction(ctx, tmp);
}

static void
setFetchHandler(
    TileMulOpts *mulOpts,
    const BlasGenSettings *gset,
    int handler(struct KgenContext *ctx, MatrixRole mrole, void *priv),
    TilePostFetchPrivate *priv)
{
    int i, nrPrivs;
    const char *regName = NULL;

    nrPrivs = 1;
    for (i = 0; i < nrPrivs; i++) {
        priv[i].fetchNumA = 0;
        priv[i].wholeA = 1;
        priv[i].funcID = CLBLAS_GEMV;
        priv[i].gset = gset;
        priv[i].regName = regName;
        mulOpts->postFetch = handler;
        mulOpts->postFetchPriv = priv;
    }
}

// global memory based kernel generator
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    KernelExtraFlags kflags = kextra->flags;
    size_t staggered = ((extraData_t*)&kextra->solverPriv)->staggered;
    //yes, KEXTRA_TAILS_K because it is set if N % bw != 0
    bool tailN = ((kflags & KEXTRA_TAILS_K) != 0);
    bool tailM = ((kflags & KEXTRA_TAILS_M) != 0);
    char tmp[4096];
    DataType dtype = kextra->dtype;
    bool doubleBased = isDoubleBasedType(dtype);
    BlasGenSettings gset;
    TileMulOpts mulOpts;
    KernelVarNames *vnames = &gset.varNames;
    ssize_t ret;
    TilePostFetchPrivate pfPriv;
    unsigned int vecLen = kextra->vecLen;
    const char *outTypeName;
    const char *gid = "get_group_id(0)";
    const char *lid = "get_local_id(0)";
    const char *typeName;
    size_t wgSize;
    //unsigned int nStep = 32;
    unsigned int bStep = subdims[0].bwidth / subdims[1].bwidth; //8;
    unsigned int cLocal;
    bool isComplex = isComplexType(dtype);
    unsigned int nPlans;

    typeName = dtypeBuiltinType(dtype);
    memset(&gset, 0, sizeof(gset));
    memset(&mulOpts, 0, sizeof(mulOpts));
    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // at first, generate needed declarations
    kgenDeclareUptrs(ctx, doubleBased);

    // now, generate the kernel
    declareGemvKernel(ctx, dtype, pgran, kflags);
    ret = kgenBeginFuncBody(ctx);
    kgenAddStmt(ctx, "// M always denotes length of Y "
                     "and N denotes length of X in the kernel\n");
    /* 1D work space. Matrix is divided among wi, each calculates it's own
     * part of vector y */

    wgSize = (subdims[0].y / subdims[1].y) *
            (subdims[0].bwidth / subdims[1].bwidth);
    assert(pgran->wgSize[0] == wgSize);
    assert(subdims[0].x == 1);
    assert(subdims[1].x == 1);
    cLocal = wgSize/bStep;

    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.subdims[0].itemX = gset.subdims[0].x = 1;
    gset.subdims[1].itemX = gset.subdims[1].x = 1;
    gset.subdims[0].bwidth = gset.subdims[1].bwidth;

    gset.pgran = pgran;
    gset.kextra = kextra;
    gset.flags = BGF_UPTRS;

    initDefaultTiles(&gset, CLBLAS_GEMV, 0, PRIV_STORAGE_VARIABLE_SET);
    if (isComplex) {
         gset.tileCY.vecLen = 1;
    }
    declareTileStorages(ctx, &gset);
    genZeroTile(ctx, &gset.tileCY);
    getVectorTypeName(dtype, gset.tileCY.vecLen, &outTypeName, NULL);
    nPlans = gset.tileCY.nrRows / gset.tileCY.vecLen;

    sprintf(tmp, "__local %s localRes[%u][%u];\n",
                outTypeName, pgran->wgSize[0], nPlans);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint coordA = (%s * %u + %s %% %u) * %lu;\n",
                 gid, bStep, lid, bStep, subdims[1].y);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint k0 = (%s / %u) * %lu;\n",
                 lid,  bStep, subdims[1].bwidth);
    kgenAddStmt(ctx, tmp);

    kgenAddBlankLine(ctx);

    kgenBeginBranch(ctx,"if (coordA < M && k0 < N)");

    genIncPointers(ctx, kflags);
    sprintf(tmp,
            "const GPtr Ag = {(__global %s*)A};\n"
            "const GPtr Xg = {(__global %s*)X};\n",
            typeName, typeName);
    kgenAddStmt(ctx, tmp);

    kgenAddBlankLine(ctx);

    if (tailN) {
        sprintf(tmp, "uint Ntail = N %% %lu;\n", subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenAddStmt(ctx, "N -= Ntail;\n");
        kgenAddBlankLine(ctx);
    }

    mulOpts.flags |= TILEMUL_OPTIMIZE_COORD_CALC;
    if (tailM) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
    }

    vnames->A = "Ag";
    vnames->B = "Xg";
    vnames->coordA = "coordA";
    vnames->coordB = ""; //should not be used for vector
    vnames->k = "k";
    vnames->lda = "lda";
    vnames->sizeK = "N";
    vnames->sizeM = "M";

    mulOpts.flags |= TILEMUL_NOT_FETCH_B | TILEMUL_TRB | TILEMUL_C_COLUMN_MAJOR | TILEMUL_NOT_INC_K;
    if ((kflags & KEXTRA_CONJUGATE_A) != 0) {
        mulOpts.flags |= TILEMUL_CONJA;
    }
    if (isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        mulOpts.flags |= TILEMUL_TRA;
    }
    if ((kflags & KEXTRA_ENABLE_MAD) != 0) {
        mulOpts.core = TILEMUL_MAD;
    }
    else {
        mulOpts.core = TILEMUL_MULADD;
    }
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;

    if (!isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        gset.subdims[0].bwidth = pgran->wgSize[0] * subdims[1].bwidth;
        mulOpts.flags |= TILEMUL_BW_STRIDE;
    }

    sprintf(tmp, "uint k = k0;\nfor (; k < N; k += %lu)", cLocal*subdims[1].bwidth);
    kgenBeginBranch(ctx, tmp);

    if (staggered) {
        vnames->k = "k1";
        sprintf(tmp, "const uint k1 = (k + get_group_id(0)*%lu)%%N;\n",staggered);
        kgenAddStmt(ctx, tmp);
    }

    genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
            mulOpts.flags, kflags);

    ret = tileMulGen(ctx, &gset, &mulOpts);
    if (ret != 0) {
        return ret;
    }
    vnames->k = "k";
    kgenEndBranch(ctx, NULL); /* k loop */

    if (tailN) {
        /* Handle tail along vector X */
        kgenAddStmt(ctx, "N += Ntail;\n");
        kgenBeginBranch(ctx, "if (k < N)");

        mulOpts.flags |= TILEMUL_SKEW_B;
        genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
                  mulOpts.flags, kflags);
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_K|TILEMUL_WRAP_AROUND_TAIL;
        setFetchHandler(&mulOpts, &gset, defaultTilePostFetch, &pfPriv);
        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL);
    }

    if (!isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        gset.subdims[0].bwidth = subdims[1].bwidth;
        mulOpts.flags &= ~TILEMUL_BW_STRIDE;
    }

    kgenEndBranch(ctx,NULL);

    genStoreLocalResult(ctx, &gset.tileCY, lid);

    kgenAddBarrier(ctx, CLK_LOCAL_MEM_FENCE);
    kgenAddBlankLine(ctx);

    sprintf(tmp, "if (%s < %u && coordA < M && k0 < N)", lid, bStep);
    kgenBeginBranch(ctx, tmp);

    genAddLocalResult(ctx, &gset.tileCY, lid, cLocal, bStep);

    /* write back the results */
    /* y := alpha*A*x + beta*y */
    setResultPos(ctx, kflags, vnames->coordA);

    updateResultVectorTiled(ctx, kflags, vecLen, &gset.tileCY);

    kgenEndBranch(ctx, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);
    return (ret < 0) ? -EOVERFLOW : ret;
}

static void
assignKargs(KernelArg *args, const void *params, const void *extra)
{
    const CLBlasKargs *blasArgs = (const CLBlasKargs*)params;
    KernelExtraFlags kflags = ((const CLBLASKernExtra*)extra)->flags;
    cl_int inc;
    int i;

    initSizeKarg(&args[0], blasArgs->M);
    initSizeKarg(&args[1], blasArgs->N);
    assignScalarKarg(&args[2], &(blasArgs->alpha), blasArgs->dtype);
    INIT_KARG(&args[3], blasArgs->A);
    INIT_KARG(&args[4], blasArgs->B);
    i = 5;
    if (!(kflags & KEXTRA_BETA_ZERO)) {
        assignScalarKarg(&args[i++], &(blasArgs->beta), blasArgs->dtype);
    }
    INIT_KARG(&args[i], blasArgs->C);
    i++;
    initSizeKarg(&args[i++], blasArgs->lda.matrix);
    if (kflags & KEXTRA_A_OFF_NOT_ZERO) {
        initSizeKarg(&args[i++], blasArgs->offA);
    }
    if (kflags & KEXTRA_BX_OFF_NOT_ZERO) {
        initSizeKarg(&args[i++], blasArgs->offBX);
    }
    if (kflags & KEXTRA_CY_OFF_NOT_ZERO) {
        initSizeKarg(&args[i++], blasArgs->offCY);
    }
    if (!(kflags & KEXTRA_INCX_ONE)) {
        inc = blasArgs->ldb.vector;
        INIT_KARG(&args[i], inc);
        i++;
    }
    if (!(kflags & KEXTRA_INCY_ONE)) {
        inc = blasArgs->ldc.vector;
        INIT_KARG(&args[i], inc);
        i++;
    }
}

static void
fixupArgs(void *args, SubproblemDim *subdims, void *extra)
{
    CLBlasKargs *kargs = (CLBlasKargs*)args;
    KernelExtraFlags kflags = ((CLBLASKernExtra*)extra)->flags;

    const size_t nChans = 8; // !!!DEVICE DEPENDED!!!
    const size_t wideChans = 64; // !!!DEVICE DEPENDED!!!
    const size_t sizeType[] = {1,2,2,4};

    size_t sizeBlock = wideChans * nChans / sizeType[kargs->dtype];
    size_t off = kargs->K % sizeBlock;
    extraData_t *extraData = (extraData_t*)&((CLBLASKernExtra*)extra)->solverPriv;
    if (off == 0 && !isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        /*
         * FIXME: staggered access is not enabled now since for some reason
         *        it leads to slowdown at small sizes
         */
        extraData->staggered = 0; // wideChans / sizeType[kargs->dtype];
    }
    else {
        extraData->staggered = 0;
    }

    (void)subdims;

    off = (kargs->offsetM) ? kargs->offsetM : kargs->offsetN;
    if (off) {
        if (isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
            kargs->offA += off;
        }
        else {
            kargs->offA += off * kargs->lda.matrix;
        }
        if (kargs->ldc.vector < 0) {
            // K store the original height of the matrix A
            kargs->offCY += (kargs->K - off) * abs(kargs->ldc.vector);
        }
        else {
            kargs->offCY += off * kargs->ldc.vector;
        }
    }

    kargs->offsetM = kargs->offsetN = 0;

}

static int
subgGetDefaultDecomp(
    PGranularity *pgran,
    SubproblemDim *subdims,
    unsigned int subdimsNum,
    void * pArgs)
{
    (void)subdimsNum;
    DUMMY_ARG_USAGE(pArgs);

    pgran->wgDim = 1;
    pgran->wgSize[0] = 64;
    pgran->wgSize[1] = 1;

    subdims[1].bwidth = 4;
    subdims[1].itemX = subdims[1].x = 1;
    subdims[1].itemY = subdims[1].y = 4;

    subdims[0].bwidth = 8 * subdims[1].bwidth;
    subdims[0].itemX = subdims[0].x = 1;
    subdims[0].itemY = subdims[0].y = 8 * subdims[1].y;

    return 0;
}

static bool
isFitToLDS(
    SubproblemDim *dim,
    DataType dtype,
    cl_ulong ldsSize,
    const void *kernelArgs)
{
    (void)kernelArgs;

    if (1) {
        cl_ulong size;

	    /*
         * One needs y1 * wgSize size of local memory in elements, but
         * y1 is not calculated yet. The expression below produces
         * reliable a larger value. It is larger in dims[1].bwidth times.
         */
        size = dim[0].y * dim[0].bwidth * dtypeSize(dtype);

        return (size <= ldsSize);
    }
    return true;
}

static void
calcNrThreads(
    size_t threads[2],
    const SubproblemDim *subdims,
    const PGranularity *pgran,
    const void *args,
    const void *extra)
{
    size_t yLen;     /* Length of "Y" vector */
    const CLBlasKargs *kargs = args;
    unsigned int subgr = pgran->wgSize[0] / (subdims[0].bwidth / subdims[1].bwidth);

    (void)subdims;
    (void)extra;

    yLen = kargs->transA == clblasNoTrans ? kargs->M : kargs->N;

    if (yLen == 0) {
        yLen = 1;
        //launch one group to avoid CL_INVALID_WORK_GROUP_SIZE error
    }

    //each work item handles y1 lines
    threads[0] = divRoundUp(yLen, subdims[1].y) * subgr;
    threads[0] = roundUp(threads[0], pgran->wgSize[0]);
    threads[1] = 0;
}

static SolverFlags
solverFlags(void)
{
    return (SF_WSPACE_1D);
}

static bool
subgCheckCalcDecomp(
    PGranularity *pgran,
    SubproblemDim *subdims,
    unsigned int subdimsNum,
    DataType dtype,
    int check)
{
    unsigned int divider1 = dtypeSize(dtype)/sizeof(cl_float);
    unsigned int divider0 = 2-!isComplexType(dtype);
    //EINVAL
    if( (subdimsNum<2)||
        (NULL==pgran)||
        (NULL==subdims) ){

        return false;
    }

    if( 0 == subdims[0].x ||
        0 == subdims[0].y ||
        0 == subdims[0].bwidth ||
        0 == subdims[1].x ||
        0 == subdims[1].y ||
        0 == subdims[1].bwidth ){

        return false;
    }

    if( subdims[1].x != subdims[1].itemX ||
        subdims[1].y != subdims[1].itemY ){

        return false;
    }

    // the group block must consist of integer number of subgroup blocks
    if( subdims[0].x % subdims[1].x ||
        subdims[0].y % subdims[1].y ||
        subdims[0].bwidth % subdims[1].bwidth ){

        return false;
    }

    //check fitting of bw to common vector sizes
    if( isComplexType(dtype) ){

        if( 2*subdims[1].bwidth > 32 ){

            return false;
        }
    }

    // check dimensions
    if( subdims[1].bwidth > 16 / divider1 ||
        subdims[1].x > 1 ||
        subdims[1].y > 16 / divider1 ){

        return false;
    }

    if( subdims[0].bwidth > 256 / divider0 ||
        subdims[0].x > 1 ||
        subdims[0].y > 256 / divider0 ){

        return false;
    }

    if (64 != (subdims[0].y / subdims[1].y) *
        (subdims[0].bwidth / subdims[1].bwidth)) {
        return false;
    }

    // passed PGranularity should be checked
    if( PGRAN_CHECK == check ){
        if( pgran->wgSize[0] * pgran->wgSize[1] != 64 ){
            return false;
        }
    }
    // PGranularity should be calculated
    else{
        pgran->wgDim = 1;
        pgran->wgSize[1] = 1;
        pgran->wgSize[0] = 64;

        //subdims[0].bwidth = (pgran->wgSize[0] * subdims[1].bwidth) /
        //    (subdims[0].y / subdims[1].y);
    }
    /*Debug out for Tune*/

    return true;
}

//-----------------------------------------------------------------------------

void
initGemvPattern(MemoryPattern *mempat)
{
    mempat->name = "Cached global memory based block gemv";
    mempat->nrLevels = 2;
    mempat->cuLevel = 0;
    mempat->thLevel = 1;
    mempat->sops = &gemvSops;

    mpatExtra.aMset = CLMEM_LEVEL_L1;
    mpatExtra.bMset = CLMEM_LEVEL_L1;
    mpatExtra.mobjA = CLMEM_BUFFER;
    mpatExtra.mobjB = CLMEM_BUFFER;
    mempat->extra = &mpatExtra;
}