summaryrefslogtreecommitdiff
path: root/src/kernels/level3/xgemm_part2.opencl
blob: 42c1127c3955db38512f75927196e56daaa93017 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This is part 2 of 2 of the GEMM kernel. See part 1 for more information.
//
// =================================================================================================

// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
// literal). Comment-out this line for syntax-highlighting when developing.
R"(

// =================================================================================================

// The vectorised multiply-add function
inline realM MultiplyAddVector(realM cvec, const realM avec, const real bval) {
  #if USE_VECTOR_MAD == 1
    cvec += avec * bval;
  #else
    #if VWM == 1
      MultiplyAdd(cvec,    avec,    bval);
    #elif VWM == 2
      MultiplyAdd(cvec.x , avec.x,  bval);
      MultiplyAdd(cvec.y , avec.y,  bval);
    #elif VWM == 4
      MultiplyAdd(cvec.x , avec.x,  bval);
      MultiplyAdd(cvec.y , avec.y,  bval);
      MultiplyAdd(cvec.z , avec.z,  bval);
      MultiplyAdd(cvec.w , avec.w,  bval);
    #elif VWM == 8
      MultiplyAdd(cvec.s0, avec.s0, bval);
      MultiplyAdd(cvec.s1, avec.s1, bval);
      MultiplyAdd(cvec.s2, avec.s2, bval);
      MultiplyAdd(cvec.s3, avec.s3, bval);
      MultiplyAdd(cvec.s4, avec.s4, bval);
      MultiplyAdd(cvec.s5, avec.s5, bval);
      MultiplyAdd(cvec.s6, avec.s6, bval);
      MultiplyAdd(cvec.s7, avec.s7, bval);
    #elif VWM == 16
      MultiplyAdd(cvec.s0, avec.s0, bval);
      MultiplyAdd(cvec.s1, avec.s1, bval);
      MultiplyAdd(cvec.s2, avec.s2, bval);
      MultiplyAdd(cvec.s3, avec.s3, bval);
      MultiplyAdd(cvec.s4, avec.s4, bval);
      MultiplyAdd(cvec.s5, avec.s5, bval);
      MultiplyAdd(cvec.s6, avec.s6, bval);
      MultiplyAdd(cvec.s7, avec.s7, bval);
      MultiplyAdd(cvec.s8, avec.s8, bval);
      MultiplyAdd(cvec.s9, avec.s9, bval);
      MultiplyAdd(cvec.sA, avec.sA, bval);
      MultiplyAdd(cvec.sB, avec.sB, bval);
      MultiplyAdd(cvec.sC, avec.sC, bval);
      MultiplyAdd(cvec.sD, avec.sD, bval);
      MultiplyAdd(cvec.sE, avec.sE, bval);
      MultiplyAdd(cvec.sF, avec.sF, bval);
    #endif
  #endif
  return cvec;
}

// Performs the actual computation: Cpm += Apm * Bpm
inline void MultiplyAccumulate(realM cpm[NWI][MWI/VWM], realM apm[MWI/VWM], realN bpm[NWI/VWN]) {
  #pragma unroll
  for (int ni=0; ni<NWI/VWN; ++ni) {
    #pragma unroll
    for (int mi=0; mi<MWI/VWM; ++mi) {
      const realM aval = apm[mi];
      #if VWN == 1
        cpm[ni*VWN + 0][mi] = MultiplyAddVector(cpm[ni*VWN + 0][mi], aval, bpm[ni]);
      #elif VWN == 2
        cpm[ni*VWN + 0][mi] = MultiplyAddVector(cpm[ni*VWN + 0][mi], aval, bpm[ni].x);
        cpm[ni*VWN + 1][mi] = MultiplyAddVector(cpm[ni*VWN + 1][mi], aval, bpm[ni].y);
      #elif VWN == 4
        cpm[ni*VWN + 0][mi] = MultiplyAddVector(cpm[ni*VWN + 0][mi], aval, bpm[ni].x);
        cpm[ni*VWN + 1][mi] = MultiplyAddVector(cpm[ni*VWN + 1][mi], aval, bpm[ni].y);
        cpm[ni*VWN + 2][mi] = MultiplyAddVector(cpm[ni*VWN + 2][mi], aval, bpm[ni].z);
        cpm[ni*VWN + 3][mi] = MultiplyAddVector(cpm[ni*VWN + 3][mi], aval, bpm[ni].w);
      #elif VWN == 8
        cpm[ni*VWN + 0][mi] = MultiplyAddVector(cpm[ni*VWN + 0][mi], aval, bpm[ni].s0);
        cpm[ni*VWN + 1][mi] = MultiplyAddVector(cpm[ni*VWN + 1][mi], aval, bpm[ni].s1);
        cpm[ni*VWN + 2][mi] = MultiplyAddVector(cpm[ni*VWN + 2][mi], aval, bpm[ni].s2);
        cpm[ni*VWN + 3][mi] = MultiplyAddVector(cpm[ni*VWN + 3][mi], aval, bpm[ni].s3);
        cpm[ni*VWN + 4][mi] = MultiplyAddVector(cpm[ni*VWN + 4][mi], aval, bpm[ni].s4);
        cpm[ni*VWN + 5][mi] = MultiplyAddVector(cpm[ni*VWN + 5][mi], aval, bpm[ni].s5);
        cpm[ni*VWN + 6][mi] = MultiplyAddVector(cpm[ni*VWN + 6][mi], aval, bpm[ni].s6);
        cpm[ni*VWN + 7][mi] = MultiplyAddVector(cpm[ni*VWN + 7][mi], aval, bpm[ni].s7);
      #elif VWN == 16
        cpm[ni*VWN + 0 ][mi] = MultiplyAddVector(cpm[ni*VWN + 0 ][mi], aval, bpm[ni].s0);
        cpm[ni*VWN + 1 ][mi] = MultiplyAddVector(cpm[ni*VWN + 1 ][mi], aval, bpm[ni].s1);
        cpm[ni*VWN + 2 ][mi] = MultiplyAddVector(cpm[ni*VWN + 2 ][mi], aval, bpm[ni].s2);
        cpm[ni*VWN + 3 ][mi] = MultiplyAddVector(cpm[ni*VWN + 3 ][mi], aval, bpm[ni].s3);
        cpm[ni*VWN + 4 ][mi] = MultiplyAddVector(cpm[ni*VWN + 4 ][mi], aval, bpm[ni].s4);
        cpm[ni*VWN + 5 ][mi] = MultiplyAddVector(cpm[ni*VWN + 5 ][mi], aval, bpm[ni].s5);
        cpm[ni*VWN + 6 ][mi] = MultiplyAddVector(cpm[ni*VWN + 6 ][mi], aval, bpm[ni].s6);
        cpm[ni*VWN + 7 ][mi] = MultiplyAddVector(cpm[ni*VWN + 7 ][mi], aval, bpm[ni].s7);
        cpm[ni*VWN + 8 ][mi] = MultiplyAddVector(cpm[ni*VWN + 8 ][mi], aval, bpm[ni].s8);
        cpm[ni*VWN + 9 ][mi] = MultiplyAddVector(cpm[ni*VWN + 9 ][mi], aval, bpm[ni].s9);
        cpm[ni*VWN + 10][mi] = MultiplyAddVector(cpm[ni*VWN + 10][mi], aval, bpm[ni].sA);
        cpm[ni*VWN + 11][mi] = MultiplyAddVector(cpm[ni*VWN + 11][mi], aval, bpm[ni].sB);
        cpm[ni*VWN + 12][mi] = MultiplyAddVector(cpm[ni*VWN + 12][mi], aval, bpm[ni].sC);
        cpm[ni*VWN + 13][mi] = MultiplyAddVector(cpm[ni*VWN + 13][mi], aval, bpm[ni].sD);
        cpm[ni*VWN + 14][mi] = MultiplyAddVector(cpm[ni*VWN + 14][mi], aval, bpm[ni].sE);
        cpm[ni*VWN + 15][mi] = MultiplyAddVector(cpm[ni*VWN + 15][mi], aval, bpm[ni].sF);
      #endif
    }
  }
}

// =================================================================================================

// Merges the results in Cpm with the global array in Cgm. This also performs the multiplication
// with the constants: Cgm = alpha*A*B + beta*Cgm = alpha*Cpm + beta*Cgm
inline void StoreResults(__global realM* cgm, realM cpm[NWI][MWI/VWM], const int kSizeM,
                         const real alpha, const real beta) {
  #pragma unroll
  for (int ni=0; ni<NWI; ++ni) {
    #pragma unroll
    for (int mi=0; mi<MWI/VWM; ++mi) {
      #if STRM == 0
        int mg = mi + get_local_id(0)*(MWI/VWM);
      #elif STRM == 1
        int mg = get_local_id(0) + mi*MDIMC;
      #endif
      #if STRN == 0
        int ng = ni + get_local_id(1)*NWI;
      #elif STRN == 1
        int ng = ni%VWN + get_local_id(1)*VWN + (ni/VWN)*VWN*NDIMC;
      #endif
      int idm = mg + GetGroupID0() * (MWG/VWM);
      int idn = ng + GetGroupID1() * NWG;

      // The final multiplication with alpha and the addition with beta*C
      int index = idn*(kSizeM/VWM) + idm;
      realM result;
      realM xval = cpm[ni][mi];
      realM yval = cgm[index];
      #if VWM == 1
        AXPBY(result, alpha, xval, beta, yval);
      #elif VWM == 2
        AXPBY(result.x, alpha, xval.x, beta, yval.x);
        AXPBY(result.y, alpha, xval.y, beta, yval.y);
      #elif VWM == 4
        AXPBY(result.x, alpha, xval.x, beta, yval.x);
        AXPBY(result.y, alpha, xval.y, beta, yval.y);
        AXPBY(result.z, alpha, xval.z, beta, yval.z);
        AXPBY(result.w, alpha, xval.w, beta, yval.w);
      #elif VWM == 8
        AXPBY(result.s0, alpha, xval.s0, beta, yval.s0);
        AXPBY(result.s1, alpha, xval.s1, beta, yval.s1);
        AXPBY(result.s2, alpha, xval.s2, beta, yval.s2);
        AXPBY(result.s3, alpha, xval.s3, beta, yval.s3);
        AXPBY(result.s4, alpha, xval.s4, beta, yval.s4);
        AXPBY(result.s5, alpha, xval.s5, beta, yval.s5);
        AXPBY(result.s6, alpha, xval.s6, beta, yval.s6);
        AXPBY(result.s7, alpha, xval.s7, beta, yval.s7);
      #elif VWM == 16
        AXPBY(result.s0, alpha, xval.s0, beta, yval.s0);
        AXPBY(result.s1, alpha, xval.s1, beta, yval.s1);
        AXPBY(result.s2, alpha, xval.s2, beta, yval.s2);
        AXPBY(result.s3, alpha, xval.s3, beta, yval.s3);
        AXPBY(result.s4, alpha, xval.s4, beta, yval.s4);
        AXPBY(result.s5, alpha, xval.s5, beta, yval.s5);
        AXPBY(result.s6, alpha, xval.s6, beta, yval.s6);
        AXPBY(result.s7, alpha, xval.s7, beta, yval.s7);
        AXPBY(result.s8, alpha, xval.s8, beta, yval.s8);
        AXPBY(result.s9, alpha, xval.s9, beta, yval.s9);
        AXPBY(result.sA, alpha, xval.sA, beta, yval.sA);
        AXPBY(result.sB, alpha, xval.sB, beta, yval.sB);
        AXPBY(result.sC, alpha, xval.sC, beta, yval.sC);
        AXPBY(result.sD, alpha, xval.sD, beta, yval.sD);
        AXPBY(result.sE, alpha, xval.sE, beta, yval.sE);
        AXPBY(result.sF, alpha, xval.sF, beta, yval.sF);
      #endif
      cgm[index] = result;
    }
  }
}

// =================================================================================================

// Main body of the matrix-multiplication algorithm. It calls the (inlined) functions above.
inline void XgemmBody(const int kSizeM, const int kSizeN, const int kSizeK,
                      const __global realM* restrict agm, const __global realN* restrict bgm,
                      __global realM* cgm, realM cpm[NWI][MWI/VWM]
                      #if SA == 1 && SB == 1
                        , __local realM* alm, __local realN* blm
                      #elif SA == 1
                        , __local realM* alm
                      #elif SB == 1
                        , __local realN* blm
                      #endif
                      ) {

  // Allocates workitem-private memory (registers)
  realM apm[MWI/VWM];
  realN bpm[NWI/VWN];

  // Combined thread identifier (volatile to disable caching)
  #if SA == 1 || SB == 1
    volatile int tid = get_local_id(0) + MDIMC*get_local_id(1);
  #endif

  // Initializes the accumulation registers
  InitAccRegisters(cpm);

  // Loops over all workgroup tiles
  for (int kwg=0; kwg<kSizeK; kwg+=KWG) {

    // Loads data: off-chip --> local (matrix A)
    #if SA == 1
      GlobalToLocalA(agm, alm, kSizeM, tid, kwg);
    #endif
    // Loads data: off-chip --> local (matrix B)
    #if SB == 1
      GlobalToLocalB(bgm, blm, kSizeN, tid, kwg);
    #endif
    #if SA == 1 || SB == 1
      barrier(CLK_LOCAL_MEM_FENCE);
    #endif

    // Loops over all workitem tiles, unrolled by a factor KWI
    for (int pwi=0; pwi<KWG; pwi+=KWI) {
      #pragma unroll
      for (int pit=0; pit<KWI; ++pit) {
        #if SA == 0 || SB == 0
          int idk = kwg + pwi + pit;
        #endif
        #if SA == 1 || SB == 1
          int kg = pwi+pit;
        #endif

        // Loads data: local --> private (matrix A)
        #if SA == 1
          LocalToPrivateA(alm, apm, kg);
        // Loads data: off-chip --> private (matrix A)
        #else
          GlobalToPrivateA(agm, apm, kSizeM, idk, kwg);
        #endif

        // Loads data: local --> private (matrix B)
        #if SB == 1
          LocalToPrivateB(blm, bpm, kg);
        // Loads data: off-chip --> private (matrix B)
        #else
          GlobalToPrivateB(bgm, bpm, kSizeN, idk);
        #endif

        // Performs the accumulation (Cpm += Apm * Bpm)
        MultiplyAccumulate(cpm, apm, bpm);
      }
    }
    #if SA == 1 || SB == 1
      barrier(CLK_LOCAL_MEM_FENCE);
    #endif
  }
  #if GLOBAL_MEM_FENCE == 1
    barrier(CLK_GLOBAL_MEM_FENCE);
  #endif
}

// =================================================================================================
// The upper-triangular and lower-triangular kernels are only used in special cases
#if defined(ROUTINE_SYRK) || defined(ROUTINE_HERK) || defined(ROUTINE_SYR2K) || defined(ROUTINE_HER2K)

// Main entry point of the kernel. This is the upper-triangular version.
__attribute__((reqd_work_group_size(MDIMC, NDIMC, 1)))
__kernel void XgemmUpper(const int kSizeN, const int kSizeK,
                         const __constant real* restrict arg_alpha,
                         const __constant real* restrict arg_beta,
                         const __global realM* restrict agm,
                         const __global realN* restrict bgm,
                         __global realM* cgm) {
  const real alpha = arg_alpha[0];
  const real beta = arg_beta[0];

  // Skip these threads if they do not contain threads contributing to the upper-triangle
  if (GetGroupID1()*NWG < GetGroupID0()*MWG) {
    return;
  }

  // Allocates workgroup-private memory (local memory)
  #if SA == 1
    __local realM alm[KWG * MWG/VWM];
  #endif
  #if SB == 1
    __local realN blm[KWG * NWG/VWN];
  #endif

  // Computes the matrix-multiplication and stores the result in register memory
  realM cpm[NWI][MWI/VWM];
  #if SA == 1 && SB == 1
    XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm, blm);
  #elif SA == 1
    XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm);
  #elif SB == 1
    XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, blm);
  #else
    XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm);
  #endif

  // Stores an MWG * NWG tile of results and performs the multiplication with alpha and beta
  StoreResults(cgm, cpm, kSizeN, alpha, beta);
}

// Main entry point of the kernel. This is the lower-triangular version.
__attribute__((reqd_work_group_size(MDIMC, NDIMC, 1)))
__kernel void XgemmLower(const int kSizeN, const int kSizeK,
                         const __constant real* restrict arg_alpha,
                         const __constant real* restrict arg_beta,
                         const __global realM* restrict agm,
                         const __global realN* restrict bgm,
                         __global realM* cgm) {
  const real alpha = arg_alpha[0];
  const real beta = arg_beta[0];

  // Skip these threads if they do not contain threads contributing to the lower-triangle
  if (GetGroupID1()*NWG > GetGroupID0()*MWG) {
    return;
  }

  // Allocates workgroup-private memory (local memory)
  #if SA == 1
    __local realM alm[KWG * MWG/VWM];
  #endif
  #if SB == 1
    __local realN blm[KWG * NWG/VWN];
  #endif

  // Computes the matrix-multiplication and stores the result in register memory
  realM cpm[NWI][MWI/VWM];
  #if SA == 1 && SB == 1
    XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm, blm);
  #elif SA == 1
    XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm);
  #elif SB == 1
    XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm, blm);
  #else
    XgemmBody(kSizeN, kSizeN, kSizeK, agm, bgm, cgm, cpm);
  #endif

  // Stores an MWG * NWG tile of results and performs the multiplication with alpha and beta
  StoreResults(cgm, cpm, kSizeN, alpha, beta);
}

// =================================================================================================
// If not using a triangular version, include the regular kernel
#else

// Main entry point of the kernel. This is the regular full version.
__attribute__((reqd_work_group_size(MDIMC, NDIMC, 1)))
__kernel void Xgemm(const int kSizeM, const int kSizeN, const int kSizeK,
                    const __constant real* restrict arg_alpha,
                    const __constant real* restrict arg_beta,
                    const __global realM* restrict agm,
                    const __global realN* restrict bgm,
                    __global realM* cgm) {
  const real alpha = arg_alpha[0];
  const real beta = arg_beta[0];

  // Allocates workgroup-private memory (local memory)
  #if SA == 1
    __local realM alm[KWG * MWG/VWM];
  #endif
  #if SB == 1
    __local realN blm[KWG * NWG/VWN];
  #endif

  // Computes the matrix-multiplication and stores the result in register memory
  realM cpm[NWI][MWI/VWM];
  #if SA == 1 && SB == 1
    XgemmBody(kSizeM, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm, blm);
  #elif SA == 1
    XgemmBody(kSizeM, kSizeN, kSizeK, agm, bgm, cgm, cpm, alm);
  #elif SB == 1
    XgemmBody(kSizeM, kSizeN, kSizeK, agm, bgm, cgm, cpm, blm);
  #else
    XgemmBody(kSizeM, kSizeN, kSizeK, agm, bgm, cgm, cpm);
  #endif

  // Stores an MWG * NWG tile of results and performs the multiplication with alpha and beta
  StoreResults(cgm, cpm, kSizeM, alpha, beta);
}

#endif
// =================================================================================================

// End of the C++11 raw string literal
)"

// =================================================================================================