summaryrefslogtreecommitdiff
path: root/src/kernels/level3/xgemm_part3.opencl
blob: 1483c26e43056d627e7437fcc8f0e5d415036553 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This is part 3 of 4 of the GEMM kernel. See part 1 for more information.
//
// =================================================================================================

// Enables loading of this file using the C++ pre-processor's #include (C++11 standard raw string
// literal). Comment-out this line for syntax-highlighting when developing.
R"(

// =================================================================================================

// Main body of the matrix-multiplication algorithm. It calls various (inlined) functions.
INLINE_FUNC void XgemmBody(const int kSizeM, const int kSizeN, const int kSizeK,
                           const __global realM* restrict agm, const __global realN* restrict bgm,
                           __global realM* cgm, const real alpha, const real beta
                           #if SA == 1 && SB == 1
                             , LOCAL_PTR realM* alm, LOCAL_PTR realN* blm
                           #elif SA == 1
                             , LOCAL_PTR realM* alm
                           #elif SB == 1
                             , LOCAL_PTR realN* blm
                           #endif
                           ) {

  // Allocates workitem-private memory (registers)
  #pragma promote_to_registers
  realM apm[MWI/VWM];
  #pragma promote_to_registers
  realN bpm[NWI/VWN];
  #pragma promote_to_registers
  realM cpm[NWI*(MWI/VWM)];

  // Combined thread identifier (volatile to disable caching)
  #if SA == 1 || SB == 1
    volatile int tid = get_local_id(0) + MDIMC*get_local_id(1);
  #endif

  // Initializes the accumulation registers
  #pragma unroll
  for (int _mi = 0; _mi < MWI/VWM; _mi += 1) {
    #pragma unroll
    for (int _ni = 0; _ni < NWI; _ni += 1) {
      cpm[_ni * (MWI/VWM) + _mi] = InitAccRegisters();
    }
  }


  // Loops over all workgroup tiles
  for (int kwg = 0; kwg < kSizeK; kwg += KWG) {

    // Loads data: off-chip --> local (matrix A)
    #if SA == 1
      GlobalToLocalA(agm, alm, kSizeM, tid, kwg);
    #endif
    // Loads data: off-chip --> local (matrix B)
    #if SB == 1
      GlobalToLocalB(bgm, blm, kSizeN, tid, kwg);
    #endif
    #if SA == 1 || SB == 1
      barrier(CLK_LOCAL_MEM_FENCE);
    #endif

    // Loops over all workitem tiles, unrolled by a factor KWI
    for (int pwi = 0; pwi < KWG; pwi += KWI) {
      #pragma unroll
      for (int _pit = 0; _pit < KWI; _pit += 1) {
        #if SA == 0 || SB == 0
          int idk = kwg + pwi + _pit;
        #endif
        #if SA == 1 || SB == 1
          int kg = pwi + _pit;
        #endif

        #pragma unroll
        for (int _mi = 0; _mi < MWI/VWM; _mi += 1) {
          // Loads data: local --> private (matrix A)
          #if SA == 1
            apm[_mi] = LocalToPrivateA(alm, _mi, kg);
          // Loads data: off-chip --> private (matrix A)
          #else
            apm[_mi] = GlobalToPrivateA(agm, _mi, kSizeM, idk, kwg);
          #endif
        }

        // Loads data: local --> private (matrix B)
        #pragma unroll
        for (int _ni = 0; _ni < NWI/VWN; _ni += 1) {
          #if SB == 1
            bpm[_ni] = LocalToPrivateB(blm, _ni, kg);
          // Loads data: off-chip --> private (matrix B)
          #else
            bpm[_ni] = GlobalToPrivateB(bgm, _ni, kSizeN, idk);
          #endif
        }

        // Performs the accumulation (Cpm += Apm * Bpm)
        #pragma unroll
        for (int _ni = 0; _ni < NWI/VWN; _ni += 1) {
          #pragma unroll
          for (int _mi = 0; _mi < MWI/VWM; _mi += 1) {
            const realM aval = apm[_mi];
            #if VWN == 1
              cpm[(_ni*VWN + 0)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 0)*(MWI/VWM) + _mi], aval, bpm[_ni]);
            #elif VWN == 2
              cpm[(_ni*VWN + 0)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 0)*(MWI/VWM) + _mi], aval, bpm[_ni].x);
              cpm[(_ni*VWN + 1)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 1)*(MWI/VWM) + _mi], aval, bpm[_ni].y);
            #elif VWN == 4
              cpm[(_ni*VWN + 0)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 0)*(MWI/VWM) + _mi], aval, bpm[_ni].x);
              cpm[(_ni*VWN + 1)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 1)*(MWI/VWM) + _mi], aval, bpm[_ni].y);
              cpm[(_ni*VWN + 2)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 2)*(MWI/VWM) + _mi], aval, bpm[_ni].z);
              cpm[(_ni*VWN + 3)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 3)*(MWI/VWM) + _mi], aval, bpm[_ni].w);
            #elif VWN == 8
              cpm[(_ni*VWN + 0)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 0)*(MWI/VWM) + _mi], aval, bpm[_ni].s0);
              cpm[(_ni*VWN + 1)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 1)*(MWI/VWM) + _mi], aval, bpm[_ni].s1);
              cpm[(_ni*VWN + 2)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 2)*(MWI/VWM) + _mi], aval, bpm[_ni].s2);
              cpm[(_ni*VWN + 3)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 3)*(MWI/VWM) + _mi], aval, bpm[_ni].s3);
              cpm[(_ni*VWN + 4)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 4)*(MWI/VWM) + _mi], aval, bpm[_ni].s4);
              cpm[(_ni*VWN + 5)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 5)*(MWI/VWM) + _mi], aval, bpm[_ni].s5);
              cpm[(_ni*VWN + 6)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 6)*(MWI/VWM) + _mi], aval, bpm[_ni].s6);
              cpm[(_ni*VWN + 7)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 7)*(MWI/VWM) + _mi], aval, bpm[_ni].s7);
            #elif VWN == 16
              cpm[(_ni*VWN + 0 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 0 )*(MWI/VWM) + _mi], aval, bpm[_ni].s0);
              cpm[(_ni*VWN + 1 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 1 )*(MWI/VWM) + _mi], aval, bpm[_ni].s1);
              cpm[(_ni*VWN + 2 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 2 )*(MWI/VWM) + _mi], aval, bpm[_ni].s2);
              cpm[(_ni*VWN + 3 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 3 )*(MWI/VWM) + _mi], aval, bpm[_ni].s3);
              cpm[(_ni*VWN + 4 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 4 )*(MWI/VWM) + _mi], aval, bpm[_ni].s4);
              cpm[(_ni*VWN + 5 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 5 )*(MWI/VWM) + _mi], aval, bpm[_ni].s5);
              cpm[(_ni*VWN + 6 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 6 )*(MWI/VWM) + _mi], aval, bpm[_ni].s6);
              cpm[(_ni*VWN + 7 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 7 )*(MWI/VWM) + _mi], aval, bpm[_ni].s7);
              cpm[(_ni*VWN + 8 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 8 )*(MWI/VWM) + _mi], aval, bpm[_ni].s8);
              cpm[(_ni*VWN + 9 )*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 9 )*(MWI/VWM) + _mi], aval, bpm[_ni].s9);
              cpm[(_ni*VWN + 10)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 10)*(MWI/VWM) + _mi], aval, bpm[_ni].sA);
              cpm[(_ni*VWN + 11)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 11)*(MWI/VWM) + _mi], aval, bpm[_ni].sB);
              cpm[(_ni*VWN + 12)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 12)*(MWI/VWM) + _mi], aval, bpm[_ni].sC);
              cpm[(_ni*VWN + 13)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 13)*(MWI/VWM) + _mi], aval, bpm[_ni].sD);
              cpm[(_ni*VWN + 14)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 14)*(MWI/VWM) + _mi], aval, bpm[_ni].sE);
              cpm[(_ni*VWN + 15)*(MWI/VWM) + _mi] = MultiplyAddVector(cpm[(_ni*VWN + 15)*(MWI/VWM) + _mi], aval, bpm[_ni].sF);
            #endif
          }
        }

      }
    }
    #if SA == 1 || SB == 1
      barrier(CLK_LOCAL_MEM_FENCE);
    #endif
  }
  #if GLOBAL_MEM_FENCE == 1
    barrier(CLK_GLOBAL_MEM_FENCE);
  #endif

  // Stores an MWG * NWG tile of results and performs the multiplication with alpha and beta
  StoreResults(cgm, cpm, kSizeM, alpha, beta);
}

// =================================================================================================

// End of the C++11 raw string literal
)"

// =================================================================================================