summaryrefslogtreecommitdiff
path: root/src/routine.cc
blob: 1086aeadcbb3673678ca4b488df4647b0b5f7a47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Routine base class (see the header for information about the class).
//
// =================================================================================================

#include <string>
#include <vector>

#include "internal/routine.h"

namespace clblast {
// =================================================================================================

// Constructor: not much here, because no status codes can be returned
template <typename T>
Routine<T>::Routine(Queue &queue, EventPointer event, const std::string &name,
                    const std::vector<std::string> &routines, const Precision precision):
    precision_(precision),
    routine_name_(name),
    queue_(queue),
    event_(event),
    context_(queue_.GetContext()),
    device_(queue_.GetDevice()),
    device_name_(device_.Name()),
    db_(queue_, routines, precision_) {
}

// =================================================================================================

// Separate set-up function to allow for status codes to be returned
template <typename T>
StatusCode Routine<T>::SetUp() {

  // Queries the cache to see whether or not the program (context-specific) is already there
  if (ProgramIsInCache(context_, precision_, routine_name_)) { return StatusCode::kSuccess; }

  // Queries the cache to see whether or not the binary (device-specific) is already there. If it
  // is, a program is created and stored in the cache
  if (BinaryIsInCache(device_name_, precision_, routine_name_)) {
    try {
      auto& binary = GetBinaryFromCache(device_name_, precision_, routine_name_);
      auto program = Program(device_, context_, binary);
      auto options = std::vector<std::string>();
      program.Build(device_, options);
      StoreProgramToCache(program, context_, precision_, routine_name_);
    } catch (...) { return StatusCode::kBuildProgramFailure; }
    return StatusCode::kSuccess;
  }

  // Otherwise, the kernel will be compiled and program will be built. Both the binary and the
  // program will be added to the cache.

  // Inspects whether or not cl_khr_fp64 is supported in case of double precision
  const auto extensions = device_.Capabilities();
  if (precision_ == Precision::kDouble || precision_ == Precision::kComplexDouble) {
    if (extensions.find(kKhronosDoublePrecision) == std::string::npos) {
      return StatusCode::kNoDoublePrecision;
    }
  }

  // As above, but for cl_khr_fp16 (half precision)
  if (precision_ == Precision::kHalf) {
    if (extensions.find(kKhronosHalfPrecision) == std::string::npos) {
      return StatusCode::kNoHalfPrecision;
    }
  }

  // Loads the common header (typedefs and defines and such)
  std::string common_header =
    #include "kernels/common.opencl"
  ;

  // Collects the parameters for this device in the form of defines, and adds the precision
  auto defines = db_.GetDefines();
  defines += "#define PRECISION "+ToString(static_cast<int>(precision_))+"\n";

  // Adds the name of the routine as a define
  defines += "#define ROUTINE_"+routine_name_+"\n";

  // For specific devices, use the non-IEE754 compilant OpenCL mad() instruction. This can improve
  // performance, but might result in a reduced accuracy.
  if (device_.IsAMD() && device_.IsGPU()) {
    defines += "#define USE_CL_MAD 1\n";
  }

  // For specific devices, use staggered/shuffled workgroup indices.
  if (device_.IsAMD() && device_.IsGPU()) {
    defines += "#define USE_STAGGERED_INDICES 1\n";
  }

  // For specific devices add a global synchronisation barrier to the GEMM kernel to optimize
  // performance through better cache behaviour
  if (device_.IsARM() && device_.IsGPU()) {
    defines += "#define GLOBAL_MEM_FENCE 1\n";
  }

  // Combines everything together into a single source string
  const auto source_string = defines + common_header + source_string_;

  // Compiles the kernel
  try {
    auto program = Program(context_, source_string);
    auto options = std::vector<std::string>();
    const auto build_status = program.Build(device_, options);

    // Checks for compiler crashes/errors/warnings
    if (build_status == BuildStatus::kError) {
      const auto message = program.GetBuildInfo(device_);
      fprintf(stdout, "OpenCL compiler error/warning: %s\n", message.c_str());
      return StatusCode::kBuildProgramFailure;
    }
    if (build_status == BuildStatus::kInvalid) { return StatusCode::kInvalidBinary; }

    // Store the compiled binary and program in the cache
    const auto binary = program.GetIR();
    StoreBinaryToCache(binary, device_name_, precision_, routine_name_);
    StoreProgramToCache(program, context_, precision_, routine_name_);
  } catch (...) { return StatusCode::kBuildProgramFailure; }

  // No errors, normal termination of this function
  return StatusCode::kSuccess;
}

// =================================================================================================

// Enqueues a kernel, waits for completion, and checks for errors
StatusCode RunKernel(Kernel &kernel, Queue queue, const Device device,
                     std::vector<size_t> global, const std::vector<size_t> &local,
                     EventPointer event, std::vector<Event>& waitForEvents) {

  // Tests for validity of the local thread sizes
  if (local.size() > device.MaxWorkItemDimensions()) {
    return StatusCode::kInvalidLocalNumDimensions; 
  }
  const auto max_work_item_sizes = device.MaxWorkItemSizes();
  for (auto i=size_t{0}; i<local.size(); ++i) {
    if (local[i] > max_work_item_sizes[i]) { return StatusCode::kInvalidLocalThreadsDim; }
  }
  auto local_size = size_t{1};
  for (auto &item: local) { local_size *= item; }
  if (local_size > device.MaxWorkGroupSize()) { return StatusCode::kInvalidLocalThreadsTotal; }

  // Make sure the global thread sizes are at least equal to the local sizes
  for (auto i=size_t{0}; i<global.size(); ++i) {
    if (global[i] < local[i]) { global[i] = local[i]; }
  }

  // Tests for local memory usage
  const auto local_mem_usage = kernel.LocalMemUsage(device);
  if (!device.IsLocalMemoryValid(local_mem_usage)) { return StatusCode::kInvalidLocalMemUsage; }

  // Launches the kernel (and checks for launch errors)
  try {
    kernel.Launch(queue, global, local, event, waitForEvents);
  } catch (...) { return StatusCode::kKernelLaunchError; }

  // No errors, normal termination of this function
  return StatusCode::kSuccess;
}

// As above, but without an event waiting list
StatusCode RunKernel(Kernel &kernel, Queue queue, const Device device,
                     std::vector<size_t> global, const std::vector<size_t> &local,
                     EventPointer event) {
  auto emptyWaitingList = std::vector<Event>();
  return RunKernel(kernel, queue, device, global, local, event, emptyWaitingList);
}

// =================================================================================================

// Compiles the templated class
template class Routine<half>;
template class Routine<float>;
template class Routine<double>;
template class Routine<float2>;
template class Routine<double2>;

// =================================================================================================
} // namespace clblast