summaryrefslogtreecommitdiff
path: root/src/routine.cc
blob: 1cf8bff8aa62db0738b2bb5088d59838f9c67ef2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the Routine base class (see the header for information about the class).
//
// =================================================================================================

#include <string>
#include <vector>

#include "internal/routine.h"

namespace clblast {
// =================================================================================================

// Constructor: not much here, because no status codes can be returned
template <typename T>
Routine<T>::Routine(Queue &queue, EventPointer event, const std::string &name,
                    const std::vector<std::string> &routines, const Precision precision):
    precision_(precision),
    routine_name_(name),
    queue_(queue),
    event_(event),
    context_(queue_.GetContext()),
    device_(queue_.GetDevice()),
    device_name_(device_.Name()),
    max_work_item_dimensions_(device_.MaxWorkItemDimensions()),
    max_work_item_sizes_(device_.MaxWorkItemSizes()),
    max_work_group_size_(device_.MaxWorkGroupSize()),
    db_(queue_, routines, precision_) {
}

// =================================================================================================

// Separate set-up function to allow for status codes to be returned
template <typename T>
StatusCode Routine<T>::SetUp() {

  // Queries the cache to see whether or not the program (context-specific) is already there
  if (ProgramIsInCache()) { return StatusCode::kSuccess; }

  // Queries the cache to see whether or not the binary (device-specific) is already there. If it
  // is, a program is created and stored in the cache
  if (BinaryIsInCache()) {
    try {
      auto& binary = cache::GetBinaryFromCache(device_name_, precision_, routine_name_);
      auto program = Program(device_, context_, binary);
      auto options = std::vector<std::string>();
      program.Build(device_, options);
      StoreProgramToCache(program);
    } catch (...) { return StatusCode::kBuildProgramFailure; }
    return StatusCode::kSuccess;
  }

  // Otherwise, the kernel will be compiled and program will be built. Both the binary and the
  // program will be added to the cache.

  // Inspects whether or not cl_khr_fp64 is supported in case of double precision
  const auto extensions = device_.Capabilities();
  if (precision_ == Precision::kDouble || precision_ == Precision::kComplexDouble) {
    if (extensions.find(kKhronosDoublePrecision) == std::string::npos) {
      return StatusCode::kNoDoublePrecision;
    }
  }

  // As above, but for cl_khr_fp16 (half precision)
  if (precision_ == Precision::kHalf) {
    if (extensions.find(kKhronosHalfPrecision) == std::string::npos) {
      return StatusCode::kNoHalfPrecision;
    }
  }

  // Loads the common header (typedefs and defines and such)
  std::string common_header =
    #include "kernels/common.opencl"
  ;

  // Collects the parameters for this device in the form of defines, and adds the precision
  auto defines = db_.GetDefines();
  defines += "#define PRECISION "+ToString(static_cast<int>(precision_))+"\n";

  // Adds the name of the routine as a define
  defines += "#define ROUTINE_"+routine_name_+"\n";

  // For specific devices, use the non-IEE754 compilant OpenCL mad() instruction. This can improve
  // performance, but might result in a reduced accuracy.
  if (device_.IsAMD() && device_.IsGPU()) {
    defines += "#define USE_CL_MAD 1\n";
  }

  // For specific devices, use staggered/shuffled workgroup indices.
  if (device_.IsAMD() && device_.IsGPU()) {
    defines += "#define USE_STAGGERED_INDICES 1\n";
  }

  // For specific devices add a global synchronisation barrier to the GEMM kernel to optimize
  // performance through better cache behaviour
  if (device_.IsARM() && device_.IsGPU()) {
    defines += "#define GLOBAL_MEM_FENCE 1\n";
  }

  // Combines everything together into a single source string
  const auto source_string = defines + common_header + source_string_;

  // Compiles the kernel
  try {
    auto program = Program(context_, source_string);
    auto options = std::vector<std::string>();
    const auto build_status = program.Build(device_, options);

    // Checks for compiler crashes/errors/warnings
    if (build_status == BuildStatus::kError) {
      const auto message = program.GetBuildInfo(device_);
      fprintf(stdout, "OpenCL compiler error/warning: %s\n", message.c_str());
      return StatusCode::kBuildProgramFailure;
    }
    if (build_status == BuildStatus::kInvalid) { return StatusCode::kInvalidBinary; }

    // Store the compiled binary and program in the cache
    const auto binary = program.GetIR();
    StoreBinaryToCache(binary);
    StoreProgramToCache(program);
  } catch (...) { return StatusCode::kBuildProgramFailure; }

  // No errors, normal termination of this function
  return StatusCode::kSuccess;
}

// =================================================================================================

// Enqueues a kernel, waits for completion, and checks for errors
template <typename T>
StatusCode Routine<T>::RunKernel(Kernel &kernel, std::vector<size_t> global,
                                 const std::vector<size_t> &local, EventPointer event,
                                 std::vector<Event>& waitForEvents) {

  // Tests for validity of the local thread sizes
  if (local.size() > max_work_item_dimensions_) {
    return StatusCode::kInvalidLocalNumDimensions; 
  }
  for (auto i=size_t{0}; i<local.size(); ++i) {
    if (local[i] > max_work_item_sizes_[i]) { return StatusCode::kInvalidLocalThreadsDim; }
  }
  auto local_size = size_t{1};
  for (auto &item: local) { local_size *= item; }
  if (local_size > max_work_group_size_) { return StatusCode::kInvalidLocalThreadsTotal; }

  // Make sure the global thread sizes are at least equal to the local sizes
  for (auto i=size_t{0}; i<global.size(); ++i) {
    if (global[i] < local[i]) { global[i] = local[i]; }
  }

  // Tests for local memory usage
  const auto local_mem_usage = kernel.LocalMemUsage(device_);
  if (!device_.IsLocalMemoryValid(local_mem_usage)) { return StatusCode::kInvalidLocalMemUsage; }

  // Launches the kernel (and checks for launch errors)
  try {
    kernel.Launch(queue_, global, local, event, waitForEvents);
  } catch (...) { return StatusCode::kKernelLaunchError; }

  // No errors, normal termination of this function
  return StatusCode::kSuccess;
}

// As above, but without an event waiting list
template <typename T>
StatusCode Routine<T>::RunKernel(Kernel &kernel, std::vector<size_t> global,
                                 const std::vector<size_t> &local, EventPointer event) {
  auto emptyWaitingList = std::vector<Event>();
  return RunKernel(kernel, global, local, event, emptyWaitingList);
}

// =================================================================================================

// Tests matrix A for validity: checks for a valid OpenCL buffer, a valid lead-dimension, and for a
// sufficient buffer size.
template <typename T>
StatusCode Routine<T>::TestMatrixA(const size_t one, const size_t two, const Buffer<T> &buffer,
                                   const size_t offset, const size_t ld, const size_t data_size) {
  if (ld < one) { return StatusCode::kInvalidLeadDimA; }
  try {
    const auto required_size = (ld*(two-1) + one + offset)*data_size;
    const auto buffer_size = buffer.GetSize();
    if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryA; }
  } catch (...) { return StatusCode::kInvalidMatrixA; }
  return StatusCode::kSuccess;
}

// Tests matrix B for validity: checks for a valid OpenCL buffer, a valid lead-dimension, and for a
// sufficient buffer size.
template <typename T>
StatusCode Routine<T>::TestMatrixB(const size_t one, const size_t two, const Buffer<T> &buffer,
                                   const size_t offset, const size_t ld, const size_t data_size) {
  if (ld < one) { return StatusCode::kInvalidLeadDimB; }
  try {
    const auto required_size = (ld*(two-1) + one + offset)*data_size;
    const auto buffer_size = buffer.GetSize();
    if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryB; }
  } catch (...) { return StatusCode::kInvalidMatrixB; }
  return StatusCode::kSuccess;
}

// Tests matrix C for validity: checks for a valid OpenCL buffer, a valid lead-dimension, and for a
// sufficient buffer size.
template <typename T>
StatusCode Routine<T>::TestMatrixC(const size_t one, const size_t two, const Buffer<T> &buffer,
                                   const size_t offset, const size_t ld, const size_t data_size) {
  if (ld < one) { return StatusCode::kInvalidLeadDimC; }
  try {
    const auto required_size = (ld*(two-1) + one + offset)*data_size;
    const auto buffer_size = buffer.GetSize();
    if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryC; }
  } catch (...) { return StatusCode::kInvalidMatrixC; }
  return StatusCode::kSuccess;
}

// Tests matrix AP for validity: checks for a valid OpenCL buffer and for a sufficient buffer size
template <typename T>
StatusCode Routine<T>::TestMatrixAP(const size_t n, const Buffer<T> &buffer,
                                    const size_t offset, const size_t data_size) {
  try {
    const auto required_size = (((n*(n+1))/2) + offset)*data_size;
    const auto buffer_size = buffer.GetSize();
    if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryA; }
  } catch (...) { return StatusCode::kInvalidMatrixA; }
  return StatusCode::kSuccess;
}

// =================================================================================================

// Tests vector X for validity: checks for a valid increment, a valid OpenCL buffer, and for a
// sufficient buffer size.
template <typename T>
StatusCode Routine<T>::TestVectorX(const size_t n, const Buffer<T> &buffer, const size_t offset,
                                   const size_t inc, const size_t data_size) {
  if (inc == 0) { return StatusCode::kInvalidIncrementX; }
  try {
    const auto required_size = ((n-1)*inc + 1 + offset)*data_size;
    const auto buffer_size = buffer.GetSize();
    if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryX; }
  } catch (...) { return StatusCode::kInvalidVectorX; }
  return StatusCode::kSuccess;
}

// Tests vector Y for validity: checks for a valid increment, a valid OpenCL buffer, and for a
// sufficient buffer size.
template <typename T>
StatusCode Routine<T>::TestVectorY(const size_t n, const Buffer<T> &buffer, const size_t offset,
                                   const size_t inc, const size_t data_size) {
  if (inc == 0) { return StatusCode::kInvalidIncrementY; }
  try {
    const auto required_size = ((n-1)*inc + 1 + offset)*data_size;
    const auto buffer_size = buffer.GetSize();
    if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryY; }
  } catch (...) { return StatusCode::kInvalidVectorY; }
  return StatusCode::kSuccess;
}

// =================================================================================================

// Tests vector dot for validity: checks for a valid increment, a valid OpenCL buffer, and for a
// sufficient buffer size.
template <typename T>
StatusCode Routine<T>::TestVectorDot(const size_t n, const Buffer<T> &buffer, const size_t offset,
                                     const size_t data_size) {
  try {
    const auto required_size = (n + offset)*data_size;
    const auto buffer_size = buffer.GetSize();
    if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryDot; }
  } catch (...) { return StatusCode::kInvalidVectorDot; }
  return StatusCode::kSuccess;
}

// Tests vector index for validity: checks for a valid increment, a valid OpenCL buffer, and for a
// sufficient buffer size.
template <typename T>
StatusCode Routine<T>::TestVectorIndex(const size_t n, const Buffer<unsigned int> &buffer,
                                       const size_t offset, const size_t data_size) {
  try {
    const auto required_size = (n + offset)*data_size;
    const auto buffer_size = buffer.GetSize();
    if (buffer_size < required_size) { return StatusCode::kInsufficientMemoryDot; }
  } catch (...) { return StatusCode::kInvalidVectorDot; }
  return StatusCode::kSuccess;
}

// =================================================================================================

// Copies or transposes a matrix and optionally pads/unpads it with zeros
template <typename T>
StatusCode Routine<T>::PadCopyTransposeMatrix(EventPointer event, std::vector<Event>& waitForEvents,
                                              const size_t src_one, const size_t src_two,
                                              const size_t src_ld, const size_t src_offset,
                                              const Buffer<T> &src,
                                              const size_t dest_one, const size_t dest_two,
                                              const size_t dest_ld, const size_t dest_offset,
                                              const Buffer<T> &dest,
                                              const T alpha,
                                              const Program &program, const bool do_pad,
                                              const bool do_transpose, const bool do_conjugate,
                                              const bool upper, const bool lower,
                                              const bool diagonal_imag_zero) {

  // Determines whether or not the fast-version could potentially be used
  auto use_fast_kernel = (src_offset == 0) && (dest_offset == 0) && (do_conjugate == false) &&
                         (src_one == dest_one) && (src_two == dest_two) && (src_ld == dest_ld) &&
                         (upper == false) && (lower == false) && (diagonal_imag_zero == false);

  // Determines the right kernel
  auto kernel_name = std::string{};
  if (do_transpose) {
    if (use_fast_kernel &&
        IsMultiple(src_ld, db_["TRA_WPT"]) &&
        IsMultiple(src_one, db_["TRA_WPT"]*db_["TRA_WPT"]) &&
        IsMultiple(src_two, db_["TRA_WPT"]*db_["TRA_WPT"])) {
      kernel_name = "TransposeMatrixFast";
    }
    else {
      use_fast_kernel = false;
      kernel_name = (do_pad) ? "TransposePadMatrix" : "TransposeMatrix";
    }
  }
  else {
    if (use_fast_kernel &&
        IsMultiple(src_ld, db_["COPY_VW"]) &&
        IsMultiple(src_one, db_["COPY_VW"]*db_["COPY_DIMX"]) &&
        IsMultiple(src_two, db_["COPY_WPT"]*db_["COPY_DIMY"])) {
      kernel_name = "CopyMatrixFast";
    }
    else {
      use_fast_kernel = false;
      kernel_name = (do_pad) ? "CopyPadMatrix" : "CopyMatrix";
    }
  }

  // Upload the scalar argument as a constant buffer to the device (needed for half-precision)
  auto alpha_buffer = Buffer<T>(context_, 1);
  alpha_buffer.Write(queue_, 1, &alpha);

  // Retrieves the kernel from the compiled binary
  try {
    auto kernel = Kernel(program, kernel_name);

    // Sets the kernel arguments
    if (use_fast_kernel) {
      kernel.SetArgument(0, static_cast<int>(src_ld));
      kernel.SetArgument(1, src());
      kernel.SetArgument(2, dest());
      kernel.SetArgument(3, alpha_buffer());
    }
    else {
      kernel.SetArgument(0, static_cast<int>(src_one));
      kernel.SetArgument(1, static_cast<int>(src_two));
      kernel.SetArgument(2, static_cast<int>(src_ld));
      kernel.SetArgument(3, static_cast<int>(src_offset));
      kernel.SetArgument(4, src());
      kernel.SetArgument(5, static_cast<int>(dest_one));
      kernel.SetArgument(6, static_cast<int>(dest_two));
      kernel.SetArgument(7, static_cast<int>(dest_ld));
      kernel.SetArgument(8, static_cast<int>(dest_offset));
      kernel.SetArgument(9, dest());
      kernel.SetArgument(10, alpha_buffer());
      if (do_pad) {
        kernel.SetArgument(11, static_cast<int>(do_conjugate));
      }
      else {
        kernel.SetArgument(11, static_cast<int>(upper));
        kernel.SetArgument(12, static_cast<int>(lower));
        kernel.SetArgument(13, static_cast<int>(diagonal_imag_zero));
      }
    }

    // Launches the kernel and returns the error code. Uses global and local thread sizes based on
    // parameters in the database.
    if (do_transpose) {
      if (use_fast_kernel) {
        const auto global = std::vector<size_t>{
          dest_one / db_["TRA_WPT"],
          dest_two / db_["TRA_WPT"]
        };
        const auto local = std::vector<size_t>{db_["TRA_DIM"], db_["TRA_DIM"]};
        return RunKernel(kernel, global, local, event, waitForEvents);
      }
      else {
        const auto global = std::vector<size_t>{
          Ceil(CeilDiv(dest_one, db_["PADTRA_WPT"]), db_["PADTRA_TILE"]),
          Ceil(CeilDiv(dest_two, db_["PADTRA_WPT"]), db_["PADTRA_TILE"])
        };
        const auto local = std::vector<size_t>{db_["PADTRA_TILE"], db_["PADTRA_TILE"]};
        return RunKernel(kernel, global, local, event, waitForEvents);
      }
    }
    else {
      if (use_fast_kernel) {
        const auto global = std::vector<size_t>{
          dest_one / db_["COPY_VW"],
          dest_two / db_["COPY_WPT"]
        };
        const auto local = std::vector<size_t>{db_["COPY_DIMX"], db_["COPY_DIMY"]};
        return RunKernel(kernel, global, local, event, waitForEvents);
      }
      else {
        const auto global = std::vector<size_t>{
          Ceil(CeilDiv(dest_one, db_["PAD_WPTX"]), db_["PAD_DIMX"]),
          Ceil(CeilDiv(dest_two, db_["PAD_WPTY"]), db_["PAD_DIMY"])
        };
        const auto local = std::vector<size_t>{db_["PAD_DIMX"], db_["PAD_DIMY"]};
        return RunKernel(kernel, global, local, event, waitForEvents);
      }
    }
  } catch (...) { return StatusCode::kInvalidKernel; }
}

// =================================================================================================

// Compiles the templated class
template class Routine<half>;
template class Routine<float>;
template class Routine<double>;
template class Routine<float2>;
template class Routine<double2>;

// =================================================================================================
} // namespace clblast