summaryrefslogtreecommitdiff
path: root/src/tuning/kernels/xgemm_direct.cpp
blob: b1d5fbc46aa58eece1c3e798f3319a04d3670dd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file uses the CLTune auto-tuner to tune the direct xgemm kernels. There are two variations:
// - V==1: This tests some limited set of tuning parameters exhaustively.
// - V==2: This tests a much larger set of tuning parameters by randomly sampling a subset.
//
// =================================================================================================

#include <string>
#include <vector>

#include "utilities/utilities.hpp"
#include "tuning/tuning.hpp"

namespace clblast {
// =================================================================================================

// See comment at top of file for a description of the class
template <typename T, int V>
class TuneXgemmDirect {
 public:

  // The representative kernel and the source code
  static std::string KernelFamily() { return (V==1) ? "xgemm_direct_1" : "xgemm_direct_2"; }
  static std::string KernelName() { return "XgemmDirectTN"; }
  static std::string GetSources() {
    return
      #include "../src/kernels/common.opencl"
      #include "../src/kernels/level3/xgemm_direct_part1.opencl"
      #include "../src/kernels/level3/xgemm_direct_part2.opencl"
      #include "../src/kernels/level3/xgemm_direct_part3.opencl"
    ;
  }

  // The list of arguments relevant for this routine
  static std::vector<std::string> GetOptions() {
    return {kArgM, kArgN, kArgK, kArgAlpha, kArgBeta, kArgFraction};
  }

  // Tests for valid arguments
  static void TestValidArguments(const Arguments<T> &) { }

  // Sets the default values for the arguments
  static size_t DefaultM() { return 256; }
  static size_t DefaultN() { return 256; }
  static size_t DefaultK() { return 256; }
  static double DefaultFraction() { return (V==1) ? 1.0 : 32.0; } // test all or sample randomly
  static size_t DefaultNumRuns() { return 4; } // run every kernel this many times for averaging

  // Describes how to obtain the sizes of the buffers
  static size_t GetSizeX(const Arguments<T> &) { return 1; } // N/A for this kernel
  static size_t GetSizeY(const Arguments<T> &) { return 1; } // N/A for this kernel
  static size_t GetSizeA(const Arguments<T> &args) { return args.m * args.k; }
  static size_t GetSizeB(const Arguments<T> &args) { return args.n * args.k; }
  static size_t GetSizeC(const Arguments<T> &args) { return args.m * args.n; }
  static size_t GetSizeTemp(const Arguments<T> &) { return 1; } // N/A for this kernel

  // Sets the tuning parameters and their possible values
  static void SetParameters(cltune::Tuner &tuner, const size_t id) {
    if (V==1) { // limited subset of tuning parameters - but explorable exhaustively
      tuner.AddParameter(id, "WGD", {8, 16, 32});
      tuner.AddParameter(id, "MDIMCD", {8, 16, 32});
      tuner.AddParameter(id, "NDIMCD", {8, 16, 32});
      tuner.AddParameter(id, "MDIMAD", {8, 16, 32});
      tuner.AddParameter(id, "NDIMBD", {8, 16, 32});
      tuner.AddParameter(id, "KWID", {2});
      tuner.AddParameter(id, "VWMD", {1, 2, 4, 8});
      tuner.AddParameter(id, "VWND", {1, 2, 4, 8});
      tuner.AddParameter(id, "PADA", {1});
      tuner.AddParameter(id, "PADB", {1});
    } // a lot more tuning parameters - has to be sampled randomly, too much to test all
    else {
      tuner.AddParameter(id, "WGD", {8, 16, 32, 64, 128});
      tuner.AddParameter(id, "MDIMCD", {8, 16, 32});
      tuner.AddParameter(id, "NDIMCD", {8, 16, 32});
      tuner.AddParameter(id, "MDIMAD", {8, 16, 32});
      tuner.AddParameter(id, "NDIMBD", {8, 16, 32});
      tuner.AddParameter(id, "KWID", {2, 8, 16});
      tuner.AddParameter(id, "VWMD", {1, 2, 4, 8});
      tuner.AddParameter(id, "VWND", {1, 2, 4, 8});
      tuner.AddParameter(id, "PADA", {0, 1});
      tuner.AddParameter(id, "PADB", {0, 1});
    }
  }

  // Sets the constraints
  static void SetConstraints(cltune::Tuner &tuner, const size_t id) {
    auto MultipleOfX = [] (std::vector<size_t> v) { return IsMultiple(v[0], v[1]); };
    auto MultipleOfXMulY = [] (std::vector<size_t> v) { return IsMultiple(v[0], v[1]*v[2]); };
    auto MultipleOfXMulYDivZ = [] (std::vector<size_t> v) { return IsMultiple(v[0], (v[1]*v[2])/v[3]); };
    // Requirement for unrolling the WGD loop
    tuner.AddConstraint(id, MultipleOfX, {"WGD", "KWID"});
    // Required for integer MWID and NWID
    tuner.AddConstraint(id, MultipleOfXMulY, {"WGD", "MDIMCD", "VWMD"});
    tuner.AddConstraint(id, MultipleOfXMulY, {"WGD", "NDIMCD", "VWND"});
    // Required for integer MWIAD and NWIBD
    tuner.AddConstraint(id, MultipleOfXMulY, {"WGD", "MDIMAD", "VWMD"});
    tuner.AddConstraint(id, MultipleOfXMulY, {"WGD", "NDIMBD", "VWND"});
    // WGD has to be a multiple of KDIMAD = ((MDIMCD*NDIMCD)/(MDIMAD)) and KDIMBD = (...)
    tuner.AddConstraint(id, MultipleOfXMulYDivZ, {"WGD", "MDIMCD", "NDIMCD", "MDIMAD"});
    tuner.AddConstraint(id, MultipleOfXMulYDivZ, {"WGD", "MDIMCD", "NDIMCD", "NDIMBD"});

    // Extra constraints for variation 1 to limit the set of options significantly
    if (V==1) {
      auto IsEqual = [] (std::vector<size_t> v) { return v[0] == v[1]; };
      tuner.AddConstraint(id, IsEqual, {"MDIMCD", "MDIMAD"});
      tuner.AddConstraint(id, IsEqual, {"NDIMCD", "NDIMBD"});
    }
  }

  // Sets the local memory size
  static void SetLocalMemorySize(cltune::Tuner &tuner, const size_t id, const Arguments<T> &args) {
    auto LocalMemorySize = [args] (std::vector<size_t> v) {
      return ((v[0]*(v[0] + v[1]) + v[0]*(v[0] + v[2]))*GetBytes(args.precision));
    };
    tuner.SetLocalMemoryUsage(id, LocalMemorySize, {"WGD", "PADA", "PADB"});
  }

  // Sets the base thread configuration
  static std::vector<size_t> GlobalSize(const Arguments<T> &args) { return {args.m, args.n}; }
  static std::vector<size_t> GlobalSizeRef(const Arguments<T> &args) { return GlobalSize(args); }
  static std::vector<size_t> LocalSize() { return {1, 1}; }
  static std::vector<size_t> LocalSizeRef() { return {8, 8}; }

  // Transforms the thread configuration based on the parameters
  using TransformVector = std::vector<std::vector<std::string>>;
  static TransformVector MulLocal() { return {{"MDIMCD", "NDIMCD"}}; }
  static TransformVector DivLocal() { return {}; }
  static TransformVector MulGlobal() { return {{"MDIMCD", "NDIMCD"}}; }
  static TransformVector DivGlobal() { return {{"WGD", "WGD"}}; }

  // Sets the kernel's arguments
  static void SetArguments(cltune::Tuner &tuner, const Arguments<T> &args,
                           std::vector<T> &, std::vector<T> &,
                           std::vector<T> &a_mat, std::vector<T> &b_mat, std::vector<T> &c_mat,
                           std::vector<T> &) {
    tuner.AddArgumentScalar(static_cast<int>(args.m));
    tuner.AddArgumentScalar(static_cast<int>(args.n));
    tuner.AddArgumentScalar(static_cast<int>(args.k));
    tuner.AddArgumentScalar(GetRealArg(args.alpha));
    tuner.AddArgumentScalar(GetRealArg(args.beta));
    tuner.AddArgumentInput(a_mat);
    tuner.AddArgumentScalar(0); // a_offset
    tuner.AddArgumentScalar(static_cast<int>(args.k)); // a_ld
    tuner.AddArgumentInput(b_mat);
    tuner.AddArgumentScalar(0); // b_offset
    tuner.AddArgumentScalar(static_cast<int>(args.n)); // b_ld
    tuner.AddArgumentOutput(c_mat);
    tuner.AddArgumentScalar(0); // c_offset
    tuner.AddArgumentScalar(static_cast<int>(args.n)); // c_ld
    tuner.AddArgumentScalar(1); // c_do_transpose
    tuner.AddArgumentScalar(0); // a_conjugate
    tuner.AddArgumentScalar(0); // b_conjugate
  }

  // Describes how to compute the performance metrics
  static size_t GetMetric(const Arguments<T> &args) {
    return 2 * args.m * args.n * args.k;
  }
  static std::string PerformanceUnit() { return "GFLOPS"; }
};

// =================================================================================================
} // namespace clblast

// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;

// Function to tune a specific variation V (not within the clblast namespace)
template <int V>
void StartVariation(int argc, char *argv[]) {
  switch(clblast::GetPrecision(argc, argv)) {
    case clblast::Precision::kHalf: clblast::Tuner<clblast::TuneXgemmDirect<half,V>, half>(argc, argv); break;
    case clblast::Precision::kSingle: clblast::Tuner<clblast::TuneXgemmDirect<float,V>, float>(argc, argv); break;
    case clblast::Precision::kDouble: clblast::Tuner<clblast::TuneXgemmDirect<double,V>, double>(argc, argv); break;
    case clblast::Precision::kComplexSingle: clblast::Tuner<clblast::TuneXgemmDirect<float2,V>, float2>(argc, argv); break;
    case clblast::Precision::kComplexDouble: clblast::Tuner<clblast::TuneXgemmDirect<double2,V>, double2>(argc, argv); break;
  }
}

// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
  StartVariation<1>(argc, argv);
  StartVariation<2>(argc, argv);
  return 0;
}

// =================================================================================================