summaryrefslogtreecommitdiff
path: root/src/tuning/routines/xtrsv.cpp
blob: 7725227351caae132d5871d76ab07722405fbb0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file tunes the Xtrsv routine at a high-level: choosing an appropriate block size
//
// =================================================================================================

#include <exception>
#include <string>
#include <vector>
#include <limits>

#include "utilities/utilities.hpp"
#include "tuning/tuning.hpp"

namespace clblast {
// =================================================================================================

constexpr auto size = size_t{1024}; // 'n' argument

template <typename T>
void SetBlockSize(const size_t value, const Device &device) {
  const auto override_status = OverrideParameters(device(), "TrsvRoutine", PrecisionValue<T>(),
                                                  {{"TRSV_BLOCK_SIZE", value}});
  if (override_status != StatusCode::kSuccess) {
    throw RuntimeError("OverrideParameters failed with status " + ToString(override_status));
  }
}

template <typename T>
void RunTrsvRoutine(const size_t block_size, Queue& queue, const std::vector<Buffer<T>>& buffers) {
  SetBlockSize<T>(block_size, queue.GetDevice());
  auto queue_plain = queue();
  auto event = cl_event{};
  auto status = Trsv<T>(Layout::kRowMajor, Triangle::kLower, Transpose::kNo, Diagonal::kNonUnit,
                        size,
                        buffers[0](), 0, size, // A matrix
                        buffers[1](), 0, 1, // X vector
                        &queue_plain, &event);
  if (status != StatusCode::kSuccess) {
    throw RuntimeError("Trsv failed with status " + ToString(status));
  }
  clWaitForEvents(1, &event);
  clReleaseEvent(event);
}

template <typename T>
void TuneXtrsv(int argc, char* argv[]) {
  auto command_line_args = RetrieveCommandLineArguments(argc, argv);
  auto help = std::string{"* Options given/available:\n"};
  const auto platform_id = GetArgument(command_line_args, help, kArgPlatform, ConvertArgument(std::getenv("CLBLAST_PLATFORM"), size_t{0}));
  const auto device_id = GetArgument(command_line_args, help, kArgDevice, ConvertArgument(std::getenv("CLBLAST_DEVICE"), size_t{0}));
  const auto precision = GetArgument(command_line_args, help, kArgPrecision, Precision::kSingle);
  const auto num_runs = GetArgument(command_line_args, help, kArgNumRuns, size_t{10});
  fprintf(stdout, "%s\n", help.c_str());

  // Values for the block size
  const auto from = size_t{8};
  const auto to = size_t{32 + 1};
  const auto step = size_t{8};

  // OpenCL initialisation
  const auto platform = Platform(platform_id);
  const auto device = Device(platform, device_id);
  if (!PrecisionSupported<T>(device)) {
    printf("* Unsupported precision, skipping this tuning run\n");
    return;
  }
  const auto context = Context(device);
  auto queue = Queue(context, device);

  // Buffers
  auto buffers = std::vector<Buffer<T>>{
    Buffer<T>(context, size * size),
    Buffer<T>(context, size)
  };

  // Performance testing
  const auto results = TimeRoutine(from, to, step, num_runs, queue, buffers, RunTrsvRoutine<T>);

  // Stores the results in the expected format
  auto scores = std::vector<TuningResult>();
  for (const auto &result : results) {
    if (result.second != -1) {
      auto tuning_results = Configuration();
      tuning_results["TRSV_BLOCK_SIZE"] = result.first;
      tuning_results["PRECISION"] = static_cast<size_t>(precision);
      scores.emplace_back(TuningResult{"trsv_routine", result.second, tuning_results});
    }
  }

  // Computes the best result
  auto best_time = std::numeric_limits<double>::max();
  auto best_value = size_t{0};
  for (const auto &result : results) {
    if (result.second != -1 && result.second < best_time) {
      best_time = result.second;
      best_value = result.first;
    }
  }
  const auto best_string = "TRSV_BLOCK_SIZE=" + ToString(best_value);

  // Outputs the results as JSON to disk, including some meta-data
  const auto precision_string = std::to_string(static_cast<size_t>(precision));
  auto metadata = std::vector<std::pair<std::string,std::string>>{
    {"kernel_family", "trsv_routine"},
    {"precision", precision_string},
    {"arg_n", ToString(size)},
    {"best_kernel", "trsv_routine"},
    {"best_time", ToString(best_time)},
    {"best_parameters", best_string}
  };
  PrintTimingsToFileAsJSON("clblast_routine_xtrsv_" + precision_string + ".json",
                           device, platform, metadata, scores);

  printf("* Completed tuning process\n");
  printf("\n");
}

// =================================================================================================
} // namespace clblast

// Shortcuts to the clblast namespace
using float2 = clblast::float2;
using double2 = clblast::double2;

// Main function (not within the clblast namespace)
int main(int argc, char *argv[]) {
  try {
    const auto command_line_args = clblast::RetrieveCommandLineArguments(argc, argv);
    switch(clblast::GetPrecision(command_line_args)) {
      case clblast::Precision::kSingle: clblast::TuneXtrsv<float>(argc, argv); break;
      case clblast::Precision::kDouble: clblast::TuneXtrsv<double>(argc, argv); break;
      case clblast::Precision::kComplexSingle: clblast::TuneXtrsv<float2>(argc, argv); break;
      case clblast::Precision::kComplexDouble: clblast::TuneXtrsv<double2>(argc, argv); break;
    }
    return 0;
  } catch (...) { return static_cast<int>(clblast::DispatchException()); }
}

// =================================================================================================