summaryrefslogtreecommitdiff
path: root/src/utilities/timing.hpp
blob: fb5b9e783477a4d8c4946aadc990938f4f36a3ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file provides helper functions for time measurement and such.
//
// =================================================================================================

#ifndef CLBLAST_TIMING_H_
#define CLBLAST_TIMING_H_

#include <cstdio>
#include <utility>
#include <vector>
#include <algorithm>
#include <chrono>

#include "utilities/utilities.hpp"
#include "routines/common.hpp"

namespace clblast {
// =================================================================================================

template <typename F>
double TimeFunction(const size_t num_runs, F const &function) {
  function(); // warm-up
  auto timings = std::vector<double>(num_runs);
  for (auto &timing: timings) {
    const auto start_time = std::chrono::steady_clock::now();
    function();
    const auto elapsed_time = std::chrono::steady_clock::now() - start_time;
    timing = std::chrono::duration<double,std::milli>(elapsed_time).count();
  }
  return *std::min_element(timings.begin(), timings.end());
}

// =================================================================================================

double RunKernelTimed(const size_t num_runs, Kernel &kernel, Queue &queue, const Device &device,
                      std::vector<size_t> global, const std::vector<size_t> &local);

double TimeKernel(const size_t num_runs, Kernel &kernel, Queue &queue, const Device &device,
                  std::vector<size_t> global, const std::vector<size_t> &local);

// =================================================================================================

using Timing = std::pair<size_t, double>;

template <typename T, typename F>
std::vector<Timing> TimeRoutine(const size_t from, const size_t to, const size_t step,
                                const size_t num_runs, const Queue& queue,
                                const std::vector<Buffer<T>>& buffers, F const &routine) {
  auto timings = std::vector<Timing>();
  for (auto value = from; value < to; value += step) {
    printf("[ RUN      ] Running with value %zu\n", value);
    try {
      const auto FunctionToTune = [&]() { routine(value, queue, buffers); };
      const auto time_ms = TimeFunction(num_runs, FunctionToTune);
      printf("[       OK ] Took %.2lf ms\n", time_ms);
      timings.push_back({value, time_ms});
    }
    catch (...) {
      printf("[    ERROR ] Exception caught\n");
      timings.push_back({value, -1.0}); // invalid
    }
  }
  return timings;
}

// =================================================================================================

using TuningParameter = std::pair<std::string, size_t>;
using TuningParameters = std::vector<TuningParameter>;
struct TuningResult { std::string name; double score; TuningParameters parameters; };

void PrintTimingsToFileAsJSON(const std::string &filename,
                              const Device& device, const Platform& platform,
                              const std::vector<std::pair<std::string,std::string>> &metadata,
                              const std::vector<TuningResult>& tuning_results) {
  printf("[  STATUS  ] Writing results to '%s'\n", filename.c_str());
  auto file = fopen(filename.c_str(), "w");
  fprintf(file, "{\n");
  for (auto &datum: metadata) {
    fprintf(file, "  \"%s\": \"%s\",\n", datum.first.c_str(), datum.second.c_str());
  }
  fprintf(file, "  \"platform_version\": \"%s\",\n", platform.Version().c_str());
  fprintf(file, "  \"clblast_device_name\": \"%s\",\n", GetDeviceName(device).c_str());
  fprintf(file, "  \"clblast_device_vendor\": \"%s\",\n", platform.Vendor().c_str());
  fprintf(file, "  \"clblast_device_type\": \"%s\",\n", device.Type().c_str());
  fprintf(file, "  \"clblast_device_architecture\": \"%s\",\n", GetDeviceArchitecture(device).c_str());
  fprintf(file, "  \"device_core_clock\": \"%zu\",\n", device.CoreClock());
  fprintf(file, "  \"device_compute_units\": \"%zu\",\n", device.ComputeUnits());
  fprintf(file, "  \"results\": [\n");

  // Loops over all results
  auto num_results = tuning_results.size();
  for (auto r = size_t{0}; r < num_results; ++r) {
    auto result = tuning_results[r];
    fprintf(file, "    {\n");
    fprintf(file, "      \"kernel\": \"%s\",\n", result.name.c_str());
    fprintf(file, "      \"time\": %.3lf,\n", result.score);

    // Loops over all the parameters for this result
    fprintf(file, "      \"parameters\": {");
    auto num_configs = result.parameters.size();
    for (auto p=size_t{0}; p<num_configs; ++p) {
      auto config = result.parameters[p];
      fprintf(file, "\"%s\": %zu", config.first.c_str(), config.second);
      if (p < num_configs-1) { fprintf(file, ","); }
    }
    fprintf(file, "}\n");

    // The footer
    fprintf(file, "    }");
    if (r < num_results - 1) { fprintf(file, ","); }
    fprintf(file, "\n");
  }
  fprintf(file, "  ]\n");
  fprintf(file, "}\n");
  fclose(file);
}

// =================================================================================================
} // namespace clblast

// CLBLAST_TIMING_H_
#endif