summaryrefslogtreecommitdiff
path: root/test/correctness/testac.cc
blob: e16186d96f16d7bfca06760a302890a4512b9313 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under the MIT license. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the TestAC class (see the header for information about the class).
//
// =================================================================================================

#include <algorithm>

#include "correctness/testac.h"

namespace clblast {
// =================================================================================================

// Constructor, initializes the base class tester and input data
template <typename T>
TestAC<T>::TestAC(int argc, char *argv[], const bool silent,
                  const std::string &name, const std::vector<std::string> &options,
                  const Routine clblast_lambda, const Routine clblas_lambda):
    Tester<T>{argc, argv, silent, name, options},
    clblast_lambda_(clblast_lambda),
    clblas_lambda_(clblas_lambda) {

  // Computes the maximum sizes. This allows for a single set of input/output buffers.
  auto max_dim = *std::max_element(kMatrixDims.begin(), kMatrixDims.end());
  auto max_ld = *std::max_element(kMatrixDims.begin(), kMatrixDims.end());
  auto max_offset = *std::max_element(kOffsets.begin(), kOffsets.end());

  // Creates test input data
  a_source_.resize(max_dim*max_ld + max_offset);
  c_source_.resize(max_dim*max_ld + max_offset);
  PopulateVector(a_source_);
  PopulateVector(c_source_);
}

// ===============================================================================================

// Tests the routine for a wide variety of parameters
template <typename T>
void TestAC<T>::TestRegular(Arguments<T> &args, const std::string &name) {
  if (!PrecisionSupported()) { return; }
  TestStart("regular behaviour", name);

  // Computes whether or not the matrices are transposed. Note that we assume a default of
  // column-major and no-transpose. If one of them is different (but not both), then rotated
  // is considered true.
  auto a_rotated = (args.layout == Layout::kColMajor && args.a_transpose != Transpose::kNo) ||
                   (args.layout == Layout::kRowMajor && args.a_transpose == Transpose::kNo);
  auto c_rotated = (args.layout == Layout::kRowMajor);

  // Iterates over the matrix dimensions
  for (auto &n: kMatrixDims) {
    args.n = n;
    for (auto &k: kMatrixDims) {
      args.k = k;

      // Computes the second dimensions of the matrices taking the rotation into account
      auto a_two = (a_rotated) ? n : k;
      auto c_two = (c_rotated) ? n : n;

      // Iterates over the leading-dimension values and the offsets
      for (auto &a_ld: kMatrixDims) {
        args.a_ld = a_ld;
        for (auto &a_offset: kOffsets) {
          args.a_offset = a_offset;
          for (auto &c_ld: kMatrixDims) {
            args.c_ld = c_ld;
            for (auto &c_offset: kOffsets) {
              args.c_offset = c_offset;

              // Computes the buffer sizes
              auto a_size = a_two * a_ld + a_offset;
              auto c_size = c_two * c_ld + c_offset;
              if (a_size < 1 || c_size < 1) { continue; }

              // Creates the OpenCL buffers
              auto a_mat = Buffer(context_, CL_MEM_READ_WRITE, a_size*sizeof(T));
              auto r_mat = Buffer(context_, CL_MEM_READ_WRITE, c_size*sizeof(T));
              auto s_mat = Buffer(context_, CL_MEM_READ_WRITE, c_size*sizeof(T));

              // Iterates over the values for alpha and beta
              for (auto &alpha: kAlphaValues) {
                args.alpha = alpha;
                for (auto &beta: kBetaValues) {
                  args.beta = beta;

                  // Runs the reference clBLAS code
                  a_mat.WriteBuffer(queue_, a_size*sizeof(T), a_source_);
                  r_mat.WriteBuffer(queue_, c_size*sizeof(T), c_source_);
                  auto status1 = clblas_lambda_(args, a_mat, r_mat, queue_);

                  // Runs the CLBlast code
                  a_mat.WriteBuffer(queue_, a_size*sizeof(T), a_source_);
                  s_mat.WriteBuffer(queue_, c_size*sizeof(T), c_source_);
                  auto status2 = clblast_lambda_(args, a_mat, s_mat, queue_);

                  // Tests for equality of the two status codes
                  if (status1 != StatusCode::kSuccess || status2 != StatusCode::kSuccess) {
                    TestErrorCodes(status1, status2, args);
                    continue;
                  }

                  // Downloads the results
                  std::vector<T> r_result(c_size, static_cast<T>(0));
                  std::vector<T> s_result(c_size, static_cast<T>(0));
                  r_mat.ReadBuffer(queue_, c_size*sizeof(T), r_result);
                  s_mat.ReadBuffer(queue_, c_size*sizeof(T), s_result);

                  // Checks for differences in the output
                  auto errors = size_t{0};
                  for (auto idn0=size_t{0}; idn0<n; ++idn0) {
                    for (auto idn1=size_t{0}; idn1<n; ++idn1) {
                      auto index = idn0*args.c_ld + idn1 + args.c_offset;
                      if (!TestSimilarity(r_result[index], s_result[index])) {
                        errors++;
                      }
                    }
                  }

                  // Tests the error count (should be zero)
                  TestErrorCount(errors, n*n, args);
                }
              }
            }
          }
        }
      }
    }
  }
  TestEnd();
}

// =================================================================================================

// Tests the routine for cases with invalid OpenCL memory buffer sizes. Tests only on return-types,
// does not test for results (if any).
template <typename T>
void TestAC<T>::TestInvalidBufferSizes(Arguments<T> &args, const std::string &name) {
  if (!PrecisionSupported()) { return; }
  TestStart("invalid buffer sizes", name);

  // Sets example test parameters
  args.m = kBufferSize;
  args.n = kBufferSize;
  args.k = kBufferSize;
  args.a_ld = kBufferSize;
  args.c_ld = kBufferSize;
  args.a_offset = 0;
  args.c_offset = 0;

  // Iterates over test buffer sizes
  const std::vector<size_t> kBufferSizes = {0, kBufferSize*kBufferSize-1, kBufferSize*kBufferSize};
  for (auto &a_size: kBufferSizes) {
    for (auto &c_size: kBufferSizes) {

      // Creates the OpenCL buffers. Note: we are not using the C++ version since we explicitly
      // want to be able to create invalid buffers (no error checking here).
      auto a = clCreateBuffer(context_(), CL_MEM_READ_WRITE, a_size*sizeof(T), nullptr, nullptr);
      auto a_mat = Buffer(a);
      auto r = clCreateBuffer(context_(), CL_MEM_READ_WRITE, c_size*sizeof(T), nullptr, nullptr);
      auto r_mat = Buffer(r);
      auto s = clCreateBuffer(context_(), CL_MEM_READ_WRITE, c_size*sizeof(T), nullptr, nullptr);
      auto s_mat = Buffer(s);

      // Runs the two routines
      auto status1 = clblas_lambda_(args, a_mat, r_mat, queue_);
      auto status2 = clblast_lambda_(args, a_mat, s_mat, queue_);

      // Tests for equality of the two status codes
      TestErrorCodes(status1, status2, args);
    }
  }
  TestEnd();
}

// =================================================================================================

// Compiles the templated class
template class TestAC<float>;
template class TestAC<double>;
template class TestAC<float2>;
template class TestAC<double2>;

// =================================================================================================
} // namespace clblast