summaryrefslogtreecommitdiff
path: root/test/test_utilities.cpp
blob: b7aef0a020f450e74450190805844ffa3a5ed711 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file implements the test utility functions.
//
// =================================================================================================

#include <string>
#include <vector>
#include <cctype>

#include "test/test_utilities.hpp"

namespace clblast {
// =================================================================================================

// Returns whether a scalar is close to zero
template <typename T> bool IsCloseToZero(const T value) { return (value > -SmallConstant<T>()) && (value < SmallConstant<T>()); }
template bool IsCloseToZero<float>(const float);
template bool IsCloseToZero<double>(const double);
template <> bool IsCloseToZero(const half value) { return IsCloseToZero(HalfToFloat(value)); }
template <> bool IsCloseToZero(const float2 value) { return IsCloseToZero(value.real()) || IsCloseToZero(value.imag()); }
template <> bool IsCloseToZero(const double2 value) { return IsCloseToZero(value.real()) || IsCloseToZero(value.imag()); }

// =================================================================================================

template <typename T, typename U>
void DeviceToHost(const Arguments<U> &args, Buffers<T> &buffers, BuffersHost<T> &buffers_host,
                  Queue &queue, const std::vector<std::string> &names) {
  for (auto &name: names) {
    if (name == kBufVecX) {buffers_host.x_vec = std::vector<T>(args.x_size, static_cast<T>(0)); buffers.x_vec.Read(queue, args.x_size, buffers_host.x_vec); }
    else if (name == kBufVecY) { buffers_host.y_vec = std::vector<T>(args.y_size, static_cast<T>(0)); buffers.y_vec.Read(queue, args.y_size, buffers_host.y_vec); }
    else if (name == kBufMatA) { buffers_host.a_mat = std::vector<T>(args.a_size, static_cast<T>(0)); buffers.a_mat.Read(queue, args.a_size, buffers_host.a_mat); }
    else if (name == kBufMatB) { buffers_host.b_mat = std::vector<T>(args.b_size, static_cast<T>(0)); buffers.b_mat.Read(queue, args.b_size, buffers_host.b_mat); }
    else if (name == kBufMatC) { buffers_host.c_mat = std::vector<T>(args.c_size, static_cast<T>(0)); buffers.c_mat.Read(queue, args.c_size, buffers_host.c_mat); }
    else if (name == kBufMatAP) { buffers_host.ap_mat = std::vector<T>(args.ap_size, static_cast<T>(0)); buffers.ap_mat.Read(queue, args.ap_size, buffers_host.ap_mat); }
    else if (name == kBufScalar) { buffers_host.scalar = std::vector<T>(args.scalar_size, static_cast<T>(0)); buffers.scalar.Read(queue, args.scalar_size, buffers_host.scalar); }
    else { throw std::runtime_error("Invalid buffer name"); }
  }
}

template <typename T, typename U>
void HostToDevice(const Arguments<U> &args, Buffers<T> &buffers, BuffersHost<T> &buffers_host,
                  Queue &queue, const std::vector<std::string> &names) {
  for (auto &name: names) {
    if (name == kBufVecX) { buffers.x_vec.Write(queue, args.x_size, buffers_host.x_vec); }
    else if (name == kBufVecY) { buffers.y_vec.Write(queue, args.y_size, buffers_host.y_vec); }
    else if (name == kBufMatA) { buffers.a_mat.Write(queue, args.a_size, buffers_host.a_mat); }
    else if (name == kBufMatB) { buffers.b_mat.Write(queue, args.b_size, buffers_host.b_mat); }
    else if (name == kBufMatC) { buffers.c_mat.Write(queue, args.c_size, buffers_host.c_mat); }
    else if (name == kBufMatAP) { buffers.ap_mat.Write(queue, args.ap_size, buffers_host.ap_mat); }
    else if (name == kBufScalar) { buffers.scalar.Write(queue, args.scalar_size, buffers_host.scalar); }
    else { throw std::runtime_error("Invalid buffer name"); }
  }
}

// Compiles the above functions
template void DeviceToHost(const Arguments<half>&, Buffers<half>&, BuffersHost<half>&, Queue&, const std::vector<std::string>&);
template void DeviceToHost(const Arguments<float>&, Buffers<float>&, BuffersHost<float>&, Queue&, const std::vector<std::string>&);
template void DeviceToHost(const Arguments<double>&, Buffers<double>&, BuffersHost<double>&, Queue&, const std::vector<std::string>&);
template void DeviceToHost(const Arguments<float>&, Buffers<float2>&, BuffersHost<float2>&, Queue&, const std::vector<std::string>&);
template void DeviceToHost(const Arguments<double>&, Buffers<double2>&, BuffersHost<double2>&, Queue&, const std::vector<std::string>&);
template void DeviceToHost(const Arguments<float2>&, Buffers<float2>&, BuffersHost<float2>&, Queue&, const std::vector<std::string>&);
template void DeviceToHost(const Arguments<double2>&, Buffers<double2>&, BuffersHost<double2>&, Queue&, const std::vector<std::string>&);
template void HostToDevice(const Arguments<half>&, Buffers<half>&, BuffersHost<half>&, Queue&, const std::vector<std::string>&);
template void HostToDevice(const Arguments<float>&, Buffers<float>&, BuffersHost<float>&, Queue&, const std::vector<std::string>&);
template void HostToDevice(const Arguments<double>&, Buffers<double>&, BuffersHost<double>&, Queue&, const std::vector<std::string>&);
template void HostToDevice(const Arguments<float>&, Buffers<float2>&, BuffersHost<float2>&, Queue&, const std::vector<std::string>&);
template void HostToDevice(const Arguments<double>&, Buffers<double2>&, BuffersHost<double2>&, Queue&, const std::vector<std::string>&);
template void HostToDevice(const Arguments<float2>&, Buffers<float2>&, BuffersHost<float2>&, Queue&, const std::vector<std::string>&);
template void HostToDevice(const Arguments<double2>&, Buffers<double2>&, BuffersHost<double2>&, Queue&, const std::vector<std::string>&);

// =================================================================================================

// Conversion between half and single-precision
std::vector<float> HalfToFloatBuffer(const std::vector<half>& source) {
  auto result = std::vector<float>(source.size());
  for (auto i = size_t(0); i < source.size(); ++i) { result[i] = HalfToFloat(source[i]); }
  return result;
}
void FloatToHalfBuffer(std::vector<half>& result, const std::vector<float>& source) {
  for (auto i = size_t(0); i < source.size(); ++i) { result[i] = FloatToHalf(source[i]); }
}

// As above, but now for OpenCL data-types instead of std::vectors
#ifdef OPENCL_API
  Buffer<float> HalfToFloatBuffer(const Buffer<half>& source, RawCommandQueue queue_raw) {
    const auto size = source.GetSize() / sizeof(half);
    auto queue = Queue(queue_raw);
    auto context = queue.GetContext();
    auto source_cpu = std::vector<half>(size);
    source.Read(queue, size, source_cpu);
    auto result_cpu = HalfToFloatBuffer(source_cpu);
    auto result = Buffer<float>(context, size);
    result.Write(queue, size, result_cpu);
    return result;
  }
  void FloatToHalfBuffer(Buffer<half>& result, const Buffer<float>& source, RawCommandQueue queue_raw) {
    const auto size = source.GetSize() / sizeof(float);
    auto queue = Queue(queue_raw);
    auto context = queue.GetContext();
    auto source_cpu = std::vector<float>(size);
    source.Read(queue, size, source_cpu);
    auto result_cpu = std::vector<half>(size);
    FloatToHalfBuffer(result_cpu, source_cpu);
    result.Write(queue, size, result_cpu);
  }
#endif

// =================================================================================================

void OverrideParametersFromJSONFiles(const cl_device_id device, const Precision precision) {
  const auto json_file_name = std::getenv("CLBLAST_JSON_FILE_OVERRIDE");
  if (json_file_name == nullptr) { return; }
  const auto json_file_name_string = std::string{json_file_name};
  OverrideParametersFromJSONFile(json_file_name_string, device, precision);
}

void OverrideParametersFromJSONFile(const std::string& file_name,
                                    const cl_device_id device, const Precision precision) {

  std::ifstream json_file(file_name);
  if (!json_file) { return; }

  fprintf(stdout, "* Reading override-parameters from '%s'\n", file_name.c_str());
  std::string line;
  auto kernel_name = std::string{};
  while (std::getline(json_file, line)) {
    const auto line_split = split(line, ':');
    if (line_split.size() != 2) { continue; }

    // Retrieves the kernel name
    if (line_split[0] == "  \"kernel_family\"") {
      const auto value_split = split(line_split[1], '\"');
      if (value_split.size() != 3) { break; }
      kernel_name = value_split[1];
      kernel_name[0] = toupper(kernel_name[0]);  // because of a tuner - database naming mismatch
    }

    // Retrieves the best-parameters and sets the override
    if (line_split[0] == "  \"best_parameters\"" && kernel_name != "") {
      const auto value_split = split(line_split[1], '\"');
      if (value_split.size() != 3) { break; }
      const auto config_split = split(value_split[1], ' ');
      if (config_split.size() == 0) { break; }

      // Creates the list of parameters
      fprintf(stdout, "* Found parameters for kernel '%s': { ", kernel_name.c_str());
      std::unordered_map<std::string,size_t> parameters;
      for (const auto config : config_split) {
        const auto params_split = split(config, '=');
        if (params_split.size() != 2) { break; }
        const auto parameter_name = params_split[0];
        if (parameter_name != "PRECISION") {
          const auto parameter_value = static_cast<size_t>(std::stoi(params_split[1].c_str()));
          printf("%s=%zu ", parameter_name.c_str(), parameter_value);
          parameters[parameter_name] = parameter_value;
        }
      }
      fprintf(stdout, "}\n");

      // Applies the parameter override
      const auto status = OverrideParameters(device, kernel_name, precision, parameters);
      if (status != StatusCode::kSuccess) { break; }

      // Ends this function (success)
      fprintf(stdout, "* Applying parameter override successfully\n");
      fprintf(stdout, "\n");
      json_file.close();
      return;
    }
  }

  // Ends this function (failure)
  fprintf(stdout, "* Failed to extract parameters from the file, continuing regularly\n");
  fprintf(stdout, "\n");
  json_file.close();
}

// =================================================================================================
} // namespace clblast