summaryrefslogtreecommitdiff
path: root/test/wrapper_cuda.hpp
blob: 0f24d0d9b5528dee40dc62b4b6c31f7e7289652d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// =================================================================================================
// This file is part of the CLBlast project. The project is licensed under Apache Version 2.0. This
// project loosely follows the Google C++ styleguide and uses a tab-size of two spaces and a max-
// width of 100 characters per line.
//
// Author(s):
//   Cedric Nugteren <www.cedricnugteren.nl>
//
// This file contains all the CUDA related code; used only in case of testing against cuBLAS
//
// =================================================================================================

#ifndef CLBLAST_TEST_WRAPPER_CUDA_H_
#define CLBLAST_TEST_WRAPPER_CUDA_H_

#include <string>
#include <vector>
#include <memory>
#include <stdexcept>

#include "utilities/utilities.hpp"

#ifdef CLBLAST_REF_CUBLAS
  #include <cuda.h>
  #include <cublas_v2.h>
#endif

namespace clblast {
// =================================================================================================

// Copies data from the CUDA device to the host and frees-up the CUDA memory afterwards
#ifdef CLBLAST_REF_CUBLAS
  template <typename T>
  void CUDAToHost(const T* buffer_cuda, const std::vector<T> &buffer_host, const size_t size) {
    cudaMemcpy(
      std::reinterpret_cast<void*>(buffer_host.data()),
      std::reinterpret_cast<void*>(buffer_cuda),
      size*sizeof(T),
      cudaMemcpyDeviceToHost
    );
    cudaFree(buffer_cuda);
}
#else
  template <typename T> void CUDAToHost(const T*, const std::vector<T>&, const size_t) { }
#endif

// Allocates space on the CUDA device and copies in data from the host
#ifdef CLBLAST_REF_CUBLAS
  template <typename T>
  void HostToCUDA(const T* buffer_cuda, const std::vector<T> &buffer_host, const size_t size) {
    cudaMalloc(std::reinterpret_cast<void**>&buffer_cuda, size*sizeof(T));
    cudaMemcpy(
      std::reinterpret_cast<void*>(buffer_cuda),
      std::reinterpret_cast<void*>(buffer_host.data()),
      size*sizeof(T),
      cudaMemcpyHostToDevice
    );
  }
#else
  template <typename T> void HostToCUDA(const T*, const std::vector<T>&, const size_t) { }
#endif

// =================================================================================================

template <typename T>
struct BuffersCUDA {
  T* x_vec;
  T* y_vec;
  T* a_mat;
  T* b_mat;
  T* c_mat;
  T* ap_mat;
  T* scalar;
};

template <typename T, typename U>
void CUDAToHost(const Arguments<U> &args, BuffersCUDA<T> &buffers, BuffersHost<T> &buffers_host,
                const std::vector<std::string> &names) {
  for (auto &name: names) {
    if (name == kBufVecX) { buffers_host.x_vec = std::vector<T>(args.x_size, static_cast<T>(0)); CUDAToHost(buffers.x_vec, buffers_host.x_vec, args.x_size); }
    else if (name == kBufVecY) { buffers_host.y_vec = std::vector<T>(args.y_size, static_cast<T>(0)); CUDAToHost(buffers.y_vec, buffers_host.y_vec, args.y_size); }
    else if (name == kBufMatA) { buffers_host.a_mat = std::vector<T>(args.a_size, static_cast<T>(0)); CUDAToHost(buffers.a_mat, buffers_host.a_mat, args.a_size); }
    else if (name == kBufMatB) { buffers_host.b_mat = std::vector<T>(args.b_size, static_cast<T>(0)); CUDAToHost(buffers.b_mat, buffers_host.b_mat, args.b_size); }
    else if (name == kBufMatC) { buffers_host.c_mat = std::vector<T>(args.c_size, static_cast<T>(0)); CUDAToHost(buffers.c_mat, buffers_host.c_mat, args.c_size); }
    else if (name == kBufMatAP) { buffers_host.ap_mat = std::vector<T>(args.ap_size, static_cast<T>(0)); CUDAToHost(buffers.ap_mat, buffers_host.ap_mat, args.ap_size); }
    else if (name == kBufScalar) { buffers_host.scalar = std::vector<T>(args.scalar_size, static_cast<T>(0)); CUDAToHost(buffers.scalar, buffers_host.scalar, args.scalar_size); }
    else { throw std::runtime_error("Invalid buffer name"); }
  }
}

template <typename T, typename U>
void HostToCUDA(const Arguments<U> &args, BuffersCUDA<T> &buffers, BuffersHost<T> &buffers_host,
                const std::vector<std::string> &names) {
  for (auto &name: names) {
    if (name == kBufVecX) { HostToCUDA(buffers.x_vec, buffers_host.x_vec, args.x_size); }
    else if (name == kBufVecY) { HostToCUDA(buffers.y_vec, buffers_host.y_vec, args.y_size); }
    else if (name == kBufMatA) { HostToCUDA(buffers.a_mat, buffers_host.a_mat, args.a_size); }
    else if (name == kBufMatB) { HostToCUDA(buffers.b_mat, buffers_host.b_mat, args.b_size); }
    else if (name == kBufMatC) { HostToCUDA(buffers.c_mat, buffers_host.c_mat, args.c_size); }
    else if (name == kBufMatAP) { HostToCUDA(buffers.ap_mat, buffers_host.ap_mat, args.ap_size); }
    else if (name == kBufScalar) { HostToCUDA(buffers.scalar, buffers_host.scalar, args.scalar_size); }
    else { throw std::runtime_error("Invalid buffer name"); }
  }
}

// =================================================================================================
} // namespace clblast

// CLBLAST_TEST_WRAPPER_CUDA_H_
#endif