summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/Witness_complex/include/gudhi/Witness_complex-parallel.h553
1 files changed, 0 insertions, 553 deletions
diff --git a/src/Witness_complex/include/gudhi/Witness_complex-parallel.h b/src/Witness_complex/include/gudhi/Witness_complex-parallel.h
deleted file mode 100644
index ac5c8dd5..00000000
--- a/src/Witness_complex/include/gudhi/Witness_complex-parallel.h
+++ /dev/null
@@ -1,553 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Siargey Kachanovich
- *
- * Copyright (C) 2015 INRIA Sophia Antipolis-Méditerranée (France)
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef GUDHI_WITNESS_COMPLEX_H_
-#define GUDHI_WITNESS_COMPLEX_H_
-
-#include <boost/container/flat_map.hpp>
-#include <boost/iterator/transform_iterator.hpp>
-#include <algorithm>
-#include <utility>
-#include "gudhi/reader_utils.h"
-#include "gudhi/distance_functions.h"
-#include "gudhi/Simplex_tree.h"
-#include <vector>
-#include <list>
-#include <unordered_set>
-#include <limits>
-#include <math.h>
-#include <ctime>
-#include <iostream>
-#include <omp.h>
-
-namespace Gudhi {
-
-
- /** \addtogroup simplex_tree
- * Witness complex is a simplicial complex defined on two sets of points in \f$\mathbf{R}^D\f$:
- * \f$W\f$ set of witnesses and \f$L \subseteq W\f$ set of landmarks. The simplices are based on points in \f$L\f$
- * and a simplex belongs to the witness complex if and only if it is witnessed (there exists a point \f$w \in W\f$ such that
- * w is closer to the vertices of this simplex than others) and all of its faces are witnessed as well.
- */
- template<typename FiltrationValue = double,
- typename SimplexKey = int,
- typename VertexHandle = int>
- class Witness_complex: public Simplex_tree<> {
-
- private:
-
- struct Active_witness {
- int witness_id;
- int landmark_id;
- Simplex_handle simplex_handle;
-
- Active_witness(int witness_id_, int landmark_id_, Simplex_handle simplex_handle_)
- : witness_id(witness_id_),
- landmark_id(landmark_id_),
- simplex_handle(simplex_handle_)
- {}
- };
-
-
-
-
- public:
-
-
- /** \brief Type for the vertex handle.
- *
- * Must be a signed integer type. It admits a total order <. */
- typedef VertexHandle Vertex_handle;
-
- /* Type of node in the simplex tree. */
- typedef Simplex_tree_node_explicit_storage<Simplex_tree> Node;
- /* Type of dictionary Vertex_handle -> Node for traversing the simplex tree. */
- typedef typename boost::container::flat_map<Vertex_handle, Node> Dictionary;
- typedef typename Dictionary::iterator Simplex_handle;
-
- typedef std::vector< double > Point_t;
- typedef std::vector< Point_t > Point_Vector;
-
- typedef std::vector< Vertex_handle > typeVectorVertex;
- typedef std::pair< typeVectorVertex, Filtration_value> typeSimplex;
- typedef std::pair< Simplex_tree<>::Simplex_handle, bool > typePairSimplexBool;
-
- typedef int Witness_id;
- typedef int Landmark_id;
- typedef std::list< Vertex_handle > ActiveWitnessList;
-
- private:
- /** Number of landmarks
- */
- int nbL;
- /** Desired density
- */
- double density;
-
- public:
-
- /** \brief Set number of landmarks to nbL_
- */
- void setNbL(int nbL_)
- {
- nbL = nbL_;
- }
-
- /** \brief Set density to density_
- */
- void setDensity(double density_)
- {
- density = density_;
- }
-
- /**
- * /brief Iterative construction of the witness complex basing on a matrix of k nearest neighbours of the form {witnesses}x{landmarks}.
- * Landmarks are supposed to be in [0,nbL-1]
- */
-
- template< typename KNearestNeighbours >
- void witness_complex(KNearestNeighbours & knn)
- //void witness_complex(std::vector< std::vector< Vertex_handle > > & knn)
- {
- std::cout << "**Start the procedure witness_complex" << std::endl;
- int k=2; /* current dimension in iterative construction */
- //Construction of the active witness list
- int nbW = knn.size();
- //int nbL = knn.at(0).size();
- typeVectorVertex vv;
- typeSimplex simplex;
- typePairSimplexBool returnValue;
- int counter = 0;
- /* The list of still useful witnesses
- * it will diminuish in the course of iterations
- */
- ActiveWitnessList active_w;// = new ActiveWitnessList();
- for (int i=0; i != nbL; ++i) {
- // initial fill of 0-dimensional simplices
- // by doing it we don't assume that landmarks are necessarily witnesses themselves anymore
- counter++;
- vv = {i};
- /* TODO Filtration */
- returnValue = insert_simplex(vv, Filtration_value(0.0));
- /* TODO Error if not inserted : normally no need here though*/
- }
- //std::cout << "Successfully added landmarks" << std::endl;
- // PRINT2
- //print_sc(root()); std::cout << std::endl;
- int u,v; // two extremities of an edge
- if (nbL > 1) // if the supposed dimension of the complex is >0
- {
- for (int i=0; i != nbW; ++i)
- {
- // initial fill of active witnesses list
- u = knn[i][0];
- v = knn[i][1];
- vv = {u,v};
- returnValue = this->insert_simplex(vv,Filtration_value(0.0));
- //print_sc(root()); std::cout << std::endl;
- //std::cout << "Added edges" << std::endl;
- }
- //print_sc(root());
- for (int i=0; i != nbW; ++i)
- {
- // initial fill of active witnesses list
- u = knn[i][0];
- v = knn[i][1];
- if ( u > v)
- {
- u = v;
- v = knn[i][0];
- knn[i][0] = knn[i][1];
- knn[i][1] = v;
- }
- Simplex_handle sh;
- vv = {u,v};
- sh = (root()->find(u))->second.children()->find(v);
- active_w.push_back(i);
- }
- }
- //std::cout << "Successfully added edges" << std::endl;
- while (!active_w.empty() && k < nbL )
- {
- //std::cout << "Started the step k=" << k << std::endl;
- typename ActiveWitnessList::iterator it = active_w.begin();
- while (it != active_w.end())
- {
- typeVectorVertex simplex_vector;
- /* THE INSERTION: Checking if all the subfaces are in the simplex tree*/
- // First sort the first k landmarks
- VertexHandle inserted_vertex = knn[*it][k];
- bool ok = all_faces_in(knn, *it, k, inserted_vertex);
- if (ok)
- {
- for (int i = 0; i != k+1; ++i)
- simplex_vector.push_back(knn[*it][i]);
- returnValue = insert_simplex(simplex_vector,0.0);
- it++;
- }
- else
- active_w.erase(it++); //First increase the iterator and then erase the previous element
- }
- k++;
- }
- //print_sc(root()); std::cout << std::endl;
- }
-
- /** \brief Construction of witness complex from points given explicitly
- * nbL must be set to the right value of landmarks for strategies
- * FURTHEST_POINT_STRATEGY and RANDOM_POINT_STRATEGY and
- * density must be set to the right value for DENSITY_STRATEGY
- */
- void witness_complex_from_points(Point_Vector point_vector)
- {
- std::vector<std::vector< int > > WL;
- clock_t start,end;
- start = clock();
- landmark_choice_by_furthest_points(point_vector, point_vector.size(), WL);
- end = clock();
- std::cout << "Landmarks took " << (double)(end-start)/CLOCKS_PER_SEC << "s.\n";
- start = clock();
- witness_complex(WL);
- end = clock();
- std::cout << "Complex construction took " << (double)(end-start)/CLOCKS_PER_SEC << "s.\n";
- }
-
-private:
-
- /** \brief Print functions
- */
- void print_sc(Siblings * sibl)
- {
- if (sibl == NULL)
- std::cout << "&";
- else
- print_children(sibl->members_);
- }
-
- void print_children(Dictionary map)
- {
- std::cout << "(";
- if (!map.empty())
- {
- std::cout << map.begin()->first;
- if (has_children(map.begin()))
- print_sc(map.begin()->second.children());
- typename Dictionary::iterator it;
- for (it = map.begin()+1; it != map.end(); ++it)
- {
- std::cout << "," << it->first;
- if (has_children(it))
- print_sc(it->second.children());
- }
- }
- std::cout << ")";
- }
-
- public:
- /** \brief Print functions
- */
-
- void st_to_file(std::ofstream& out_file)
- {
- sc_to_file(out_file, root());
- }
-
- private:
- void sc_to_file(std::ofstream& out_file, Siblings * sibl)
- {
- if (sibl == NULL)
- out_file << "&";
- else
- children_to_file(out_file, sibl->members_);
- }
-
- void children_to_file(std::ofstream& out_file, Dictionary map)
- {
- out_file << "(";
- if (!map.empty())
- {
- out_file << map.begin()->first;
- if (has_children(map.begin()))
- sc_to_file(out_file, map.begin()->second.children());
- typename Dictionary::iterator it;
- for (it = map.begin()+1; it != map.end(); ++it)
- {
- out_file << "," << it->first;
- if (has_children(it))
- sc_to_file(out_file, it->second.children());
- }
- }
- out_file << ")";
- }
-
-
- /** \brief Check if the facets of the k-dimensional simplex witnessed
- * by witness witness_id are already in the complex.
- * inserted_vertex is the handle of the (k+1)-th vertex witnessed by witness_id
- */
- template <typename KNearestNeighbours>
- bool all_faces_in(KNearestNeighbours &knn, int witness_id, int k, VertexHandle inserted_vertex)
- {
- //std::cout << "All face in with the landmark " << inserted_vertex << std::endl;
- std::vector< VertexHandle > facet;
- //VertexHandle curr_vh = curr_sh->first;
- // CHECK ALL THE FACETS
- for (int i = 0; i != k+1; ++i)
- {
- if (knn[witness_id][i] != inserted_vertex)
- {
- facet = {};
- for (int j = 0; j != k+1; ++j)
- {
- if (j != i)
- {
- facet.push_back(knn[witness_id][j]);
- }
- }//endfor
- if (find(facet) == null_simplex())
- return false;
- //std::cout << "++++ finished loop safely\n";
- }//endif
- } //endfor
- return true;
- }
-
- template <typename T>
- void print_vector(std::vector<T> v)
- {
- std::cout << "[";
- if (!v.empty())
- {
- std::cout << *(v.begin());
- for (auto it = v.begin()+1; it != v.end(); ++it)
- {
- std::cout << ",";
- std::cout << *it;
- }
- }
- std::cout << "]";
- }
-
- template <typename T>
- void print_vvector(std::vector< std::vector <T> > vv)
- {
- std::cout << "[";
- if (!vv.empty())
- {
- print_vector(*(vv.begin()));
- for (auto it = vv.begin()+1; it != vv.end(); ++it)
- {
- std::cout << ",";
- print_vector(*it);
- }
- }
- std::cout << "]\n";
- }
-
-/**
- * \brief Landmark choice strategy by iteratively adding the landmark the furthest from the
- * current landmark set
- * \arg W is the vector of points which will be the witnesses
- * \arg nbP is the number of witnesses
- * \arg nbL is the number of landmarks
- * \arg WL is the matrix of the nearest landmarks with respect to witnesses (output)
- */
-
- template <typename KNearestNeighbours>
- void landmark_choice_by_furthest_points(Point_Vector &W, int nbP, KNearestNeighbours &WL)
- {
- //std::cout << "Enter landmark_choice_by_furthest_points "<< std::endl;
- //std::cout << "W="; print_vvector(W);
- //double density = 5.;
- Point_Vector wit_land_dist(nbP,std::vector<double>()); // distance matrix witness x landmarks
- typeVectorVertex chosen_landmarks; // landmark list
-
- WL = KNearestNeighbours(nbP,std::vector<int>());
- int current_number_of_landmarks=0; // counter for landmarks
- double curr_max_dist = 0; // used for defining the furhest point from L
- double curr_dist; // used to stock the distance from the current point to L
- double infty = std::numeric_limits<double>::infinity(); // infinity (see next entry)
- std::vector< double > dist_to_L(nbP,infty); // vector of current distances to L from points
- // double mindist = infty;
- int curr_max_w=0; // the point currently furthest from L
- int j;
- int temp_swap_int;
- double temp_swap_double;
-
- //CHOICE OF THE FIRST LANDMARK
- std::cout << "Enter the first landmark stage\n";
- srand(354698);
- int rand_int = rand()% nbP;
- curr_max_w = rand_int; //For testing purposes a pseudo-random number is used here
-
- for (current_number_of_landmarks = 0; current_number_of_landmarks != nbL; current_number_of_landmarks++)
- {
- //curr_max_w at this point is the next landmark
- chosen_landmarks.push_back(curr_max_w);
- //std::cout << "**********Entered loop with current number of landmarks = " << current_number_of_landmarks << std::endl;
- //std::cout << "WL="; print_vvector(WL);
- //std::cout << "WLD="; print_vvector(wit_land_dist);
- //std::cout << "landmarks="; print_vector(chosen_landmarks); std::cout << std::endl;
- for (auto v: WL)
- v.push_back(current_number_of_landmarks);
- //#pragma omp parallel for
- for (int i = 0; i < nbP; ++i)
- {
- // iteration on points in W. update of distance vectors
-
- //std::cout << "In the loop with i=" << i << " and landmark=" << chosen_landmarks[current_number_of_landmarks] << std::endl;
- //std::cout << "W[i]="; print_vector(W[i]); std::cout << " W[landmark]="; print_vector(W[chosen_landmarks[current_number_of_landmarks]]); std::cout << std::endl;
- curr_dist = euclidean_distance(W[i],W[chosen_landmarks[current_number_of_landmarks]]);
- //std::cout << "The problem is not in distance function\n";
- wit_land_dist[i].push_back(curr_dist);
- WL[i].push_back(current_number_of_landmarks);
- //std::cout << "Push't back\n";
- if (curr_dist < dist_to_L[i])
- dist_to_L[i] = curr_dist;
- j = current_number_of_landmarks;
- //std::cout << "First half complete\n";
- while (j > 0 && wit_land_dist[i][j-1] > wit_land_dist[i][j])
- {
- // sort the closest landmark vector for every witness
- temp_swap_int = WL[i][j];
- WL[i][j] = WL[i][j-1];
- WL[i][j-1] = temp_swap_int;
- temp_swap_double = wit_land_dist[i][j];
- wit_land_dist[i][j] = wit_land_dist[i][j-1];
- wit_land_dist[i][j-1] = temp_swap_double;
- --j;
- }
- //std::cout << "result WL="; print_vvector(WL);
- //std::cout << "result WLD="; print_vvector(wit_land_dist);
- //std::cout << "result distL="; print_vector(dist_to_L); std::cout << std::endl;
- //std::cout << "End loop\n";
- }
- //std::cout << "Distance to landmarks="; print_vector(dist_to_L); std::cout << std::endl;
- curr_max_dist = 0;
- //omp_set_variable()
- #pragma omp parallel for
- for (int i = 0; i < nbP; ++i) {
- if (dist_to_L[i] > curr_max_dist)
- {
- //#pragma omp ordered
- {
- curr_max_dist = dist_to_L[i];
- curr_max_w = i;
- }
- }
- }
- /*
- for (int i = 0; i < nbP; ++i) {
- if (dist_to_L[i] > curr_max_dist)
- {
- {
- curr_max_dist = dist_to_L[i];
- curr_max_w = i;
- }
- }
- }
- */
- //std::cout << "Chose " << curr_max_w << " as new landmark\n";
- }
- //std::cout << endl;
- }
-
- /** \brief Landmark choice strategy by taking random vertices for landmarks.
- *
- */
-
- template <typename KNearestNeighbours>
- void landmark_choice_by_random_points(Point_Vector &W, int nbP, KNearestNeighbours &WL)
- {
- //std::cout << "Enter landmark_choice_by_random_points "<< std::endl;
- //std::cout << "W="; print_vvector(W);
- std::unordered_set< int > chosen_landmarks; // landmark set
-
- Point_Vector wit_land_dist(nbP,std::vector<double>()); // distance matrix witness x landmarks
-
- WL = KNearestNeighbours(nbP,std::vector<int>());
- int current_number_of_landmarks=0; // counter for landmarks
-
- srand(24660);
- int chosen_landmark = rand()%nbP;
- double curr_dist;
-
- int j;
- int temp_swap_int;
- double temp_swap_double;
-
-
- for (current_number_of_landmarks = 0; current_number_of_landmarks != nbL; current_number_of_landmarks++)
- {
- while (chosen_landmarks.find(chosen_landmark) != chosen_landmarks.end())
- {
- srand((int)clock());
- chosen_landmark = rand()% nbP;
- //std::cout << chosen_landmark << "\n";
- }
- chosen_landmarks.insert(chosen_landmark);
- //std::cout << "**********Entered loop with current number of landmarks = " << current_number_of_landmarks << std::endl;
- //std::cout << "WL="; print_vvector(WL);
- //std::cout << "WLD="; print_vvector(wit_land_dist);
- //std::cout << "landmarks="; print_vector(chosen_landmarks); std::cout << std::endl;
- for (auto v: WL)
- v.push_back(current_number_of_landmarks);
- for (int i = 0; i < nbP; ++i)
- {
- // iteration on points in W. update of distance vectors
-
- //std::cout << "In the loop with i=" << i << " and landmark=" << chosen_landmarks[current_number_of_landmarks] << std::endl;
- //std::cout << "W[i]="; print_vector(W[i]); std::cout << " W[landmark]="; print_vector(W[chosen_landmarks[current_number_of_landmarks]]); std::cout << std::endl;
- curr_dist = euclidean_distance(W[i],W[chosen_landmark]);
- //std::cout << "The problem is not in distance function\n";
- wit_land_dist[i].push_back(curr_dist);
- WL[i].push_back(current_number_of_landmarks);
- //std::cout << "Push't back\n";
- j = current_number_of_landmarks;
- //std::cout << "First half complete\n";
- while (j > 0 && wit_land_dist[i][j-1] > wit_land_dist[i][j])
- {
- // sort the closest landmark vector for every witness
- temp_swap_int = WL[i][j];
- WL[i][j] = WL[i][j-1];
- WL[i][j-1] = temp_swap_int;
- temp_swap_double = wit_land_dist[i][j];
- wit_land_dist[i][j] = wit_land_dist[i][j-1];
- wit_land_dist[i][j-1] = temp_swap_double;
- --j;
- }
- //std::cout << "result WL="; print_vvector(WL);
- //std::cout << "result WLD="; print_vvector(wit_land_dist);
- //std::cout << "End loop\n";
- }
- }
- //std::cout << endl;
- }
-
-
-}; //class Witness_complex
-
-
-
-} // namespace Guhdi
-
-#endif