summaryrefslogtreecommitdiff
path: root/src/GudhUI/utils/Furthest_point_epsilon_net.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/GudhUI/utils/Furthest_point_epsilon_net.h')
-rw-r--r--src/GudhUI/utils/Furthest_point_epsilon_net.h244
1 files changed, 121 insertions, 123 deletions
diff --git a/src/GudhUI/utils/Furthest_point_epsilon_net.h b/src/GudhUI/utils/Furthest_point_epsilon_net.h
index 590b65c4..f2a216f6 100644
--- a/src/GudhUI/utils/Furthest_point_epsilon_net.h
+++ b/src/GudhUI/utils/Furthest_point_epsilon_net.h
@@ -1,134 +1,132 @@
-/*
- * Furthest_point_epsilon_net.h
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
*
- * Created on: Sep 26, 2014
- * Author: dsalinas
+ * Author(s): David Salinas
+ *
+ * Copyright (C) 2014 INRIA Sophia Antipolis-Mediterranee (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ *
*/
-#ifndef FURTHEST_POINT_EPSILON_NET_H_
-#define FURTHEST_POINT_EPSILON_NET_H_
+#ifndef UTILS_FURTHEST_POINT_EPSILON_NET_H_
+#define UTILS_FURTHEST_POINT_EPSILON_NET_H_
-#include "utils/UI_utils.h"
#include <vector>
+#include <algorithm> // for sort
+
+#include "utils/UI_utils.h"
/**
* Computes an epsilon net with furthest point strategy.
*/
-template<typename SkBlComplex> class Furthest_point_epsilon_net{
-private:
- SkBlComplex& complex_;
- typedef typename SkBlComplex::Vertex_handle Vertex_handle;
- typedef typename SkBlComplex::Edge_handle Edge_handle;
-
- /**
- * Let V be the set of vertices.
- * Initially v0 is one arbitrarly vertex and the set V0 is {v0}.
- * Then Vk is computed as follows.
- * First we compute the vertex pk that is the furthest from Vk
- * then Vk = Vk \cup pk.
- * The radius of pk is its distance to Vk and its meeting vertex
- * is the vertex of Vk for which this distance is achieved.
- */
- struct Net_filtration_vertex{
- Vertex_handle vertex_handle;
- Vertex_handle meeting_vertex;
- double radius;
-
-
- Net_filtration_vertex(
- Vertex_handle vertex_handle_,
- Vertex_handle meeting_vertex_,
- double radius_):
- vertex_handle(vertex_handle_),meeting_vertex(meeting_vertex_),radius(radius_)
- {}
-
- bool operator<(const Net_filtration_vertex& other ) const{
- return radius < other.radius;
- }
-
- };
-
-public:
-
-
- std::vector<Net_filtration_vertex> net_filtration_;
-
- /**
- * @brief Modify complex to be the expansion of the k-nearest neighbor
- * symetric graph.
- */
- Furthest_point_epsilon_net(SkBlComplex& complex):
- complex_(complex)
- {
- if(!complex.empty()){
- init_filtration();
- for(int k = 2; k < net_filtration_.size(); ++k){
- update_radius_value(k);
- }
- }
- }
-
- //xxx does not work if complex not full
- double radius(Vertex_handle v){
- return net_filtration_[v.vertex].radius;
- }
-
-
-
-
-private:
-
- void init_filtration(){
- Vertex_handle v0 = *(complex_.vertex_range().begin());
- net_filtration_.reserve(complex_.num_vertices());
- for(auto v : complex_.vertex_range()){
- if(v != v0)
- net_filtration_.push_back(
- Net_filtration_vertex(v,
- Vertex_handle(-1),
- squared_eucl_distance(v,v0))
- );
- }
- net_filtration_.push_back(Net_filtration_vertex(v0,Vertex_handle(-1),1e10));
- auto n = net_filtration_.size();
- sort_filtration(n-1);
- }
-
- void update_radius_value(int k){
- int n = net_filtration_.size();
- int index_to_update = n-k;
- for(int i = 0; i< index_to_update; ++i){
- net_filtration_[i].radius = (std::min)(net_filtration_[i].radius ,
- squared_eucl_distance(
- net_filtration_[i].vertex_handle,
- net_filtration_[index_to_update].vertex_handle
- )
- );
- }
- sort_filtration(n-k);
- }
-
- /**
- * sort all i first elements.
- */
- void sort_filtration(int i){
- std::sort(net_filtration_.begin(),net_filtration_.begin()+ i);
- }
-
- double squared_eucl_distance(Vertex_handle v1,Vertex_handle v2) const{
- return std::sqrt(Geometry_trait::Squared_distance_d()(
- complex_.point(v1),complex_.point(v2))
- );
- }
-
- void print_filtration() const{
- for(auto v : net_filtration_){
- std::cerr <<"v="<<v.vertex_handle<<"-> d="<<v.radius<<std::endl;
- }
- }
-
+template<typename SkBlComplex> class Furthest_point_epsilon_net {
+ private:
+ SkBlComplex& complex_;
+ typedef typename SkBlComplex::Vertex_handle Vertex_handle;
+ typedef typename SkBlComplex::Edge_handle Edge_handle;
+
+ /**
+ * Let V be the set of vertices.
+ * Initially v0 is one arbitrarly vertex and the set V0 is {v0}.
+ * Then Vk is computed as follows.
+ * First we compute the vertex pk that is the furthest from Vk
+ * then Vk = Vk \cup pk.
+ * The radius of pk is its distance to Vk and its meeting vertex
+ * is the vertex of Vk for which this distance is achieved.
+ */
+ struct Net_filtration_vertex {
+ Vertex_handle vertex_handle;
+ Vertex_handle meeting_vertex;
+ double radius;
+
+ Net_filtration_vertex(Vertex_handle vertex_handle_,
+ Vertex_handle meeting_vertex_,
+ double radius_) :
+ vertex_handle(vertex_handle_), meeting_vertex(meeting_vertex_), radius(radius_) { }
+
+ bool operator<(const Net_filtration_vertex& other) const {
+ return radius < other.radius;
+ }
+ };
+
+ public:
+ std::vector<Net_filtration_vertex> net_filtration_;
+
+ /**
+ * @brief Modify complex to be the expansion of the k-nearest neighbor
+ * symetric graph.
+ */
+ Furthest_point_epsilon_net(SkBlComplex& complex) :
+ complex_(complex) {
+ if (!complex.empty()) {
+ init_filtration();
+ for (int k = 2; k < net_filtration_.size(); ++k) {
+ update_radius_value(k);
+ }
+ }
+ }
+
+ // xxx does not work if complex not full
+
+ double radius(Vertex_handle v) {
+ return net_filtration_[v.vertex].radius;
+ }
+
+ private:
+ void init_filtration() {
+ Vertex_handle v0 = *(complex_.vertex_range().begin());
+ net_filtration_.reserve(complex_.num_vertices());
+ for (auto v : complex_.vertex_range()) {
+ if (v != v0)
+ net_filtration_.push_back(Net_filtration_vertex(v,
+ Vertex_handle(-1),
+ squared_eucl_distance(v, v0)));
+ }
+ net_filtration_.push_back(Net_filtration_vertex(v0, Vertex_handle(-1), 1e10));
+ auto n = net_filtration_.size();
+ sort_filtration(n - 1);
+ }
+
+ void update_radius_value(int k) {
+ int n = net_filtration_.size();
+ int index_to_update = n - k;
+ for (int i = 0; i < index_to_update; ++i) {
+ net_filtration_[i].radius = (std::min)(net_filtration_[i].radius,
+ squared_eucl_distance(net_filtration_[i].vertex_handle,
+ net_filtration_[index_to_update].vertex_handle));
+ }
+ sort_filtration(n - k);
+ }
+
+ /**
+ * sort all i first elements.
+ */
+ void sort_filtration(int i) {
+ std::sort(net_filtration_.begin(), net_filtration_.begin() + i);
+ }
+
+ double squared_eucl_distance(Vertex_handle v1, Vertex_handle v2) const {
+ return std::sqrt(Geometry_trait::Squared_distance_d()(complex_.point(v1), complex_.point(v2)));
+ }
+
+ void print_filtration() const {
+ for (auto v : net_filtration_) {
+ std::cerr << "v=" << v.vertex_handle << "-> d=" << v.radius << std::endl;
+ }
+ }
};
-
-
-#endif /* FURTHEST_POINT_EPSILON_NET_H_ */
+#endif // UTILS_FURTHEST_POINT_EPSILON_NET_H_