summaryrefslogtreecommitdiff
path: root/src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscape_on_grid.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscape_on_grid.h')
-rw-r--r--src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscape_on_grid.h1363
1 files changed, 0 insertions, 1363 deletions
diff --git a/src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscape_on_grid.h b/src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscape_on_grid.h
deleted file mode 100644
index d29a51ab..00000000
--- a/src/Gudhi_stat/include/gudhi/concretizations/Persistence_landscape_on_grid.h
+++ /dev/null
@@ -1,1363 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *h
- * Author(s): Pawel Dlotko
- *
- * Copyright (C) 2015 INRIA (France)
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef Persistence_landscape_on_grid_H_
-#define Persistence_landscape_on_grid_H_
-
-
-//standard include
-#include <iostream>
-#include <vector>
-#include <limits>
-#include <fstream>
-#include <sstream>
-#include <algorithm>
-#include <unistd.h>
-#include <cmath>
-
-
-//gudhi include
-
-#include <gudhi/read_persitence_from_file.h>
-#include <gudhi/common_gudhi_stat.h>
-
-
-
-namespace Gudhi
-{
-namespace Gudhi_stat
-{
-
-
-//this class implements the following concepts: Vectorized_topological_data, Topological_data_with_distances, Real_valued_topological_data, Topological_data_with_averages, Topological_data_with_scalar_product
-class Persistence_landscape_on_grid
-{
-public:
- /**
- * Default constructor.
- **/
- Persistence_landscape_on_grid()
- {
- this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
- this->grid_min = this->grid_max = 0;
- }
-
- /**
- * Constructor that takes as an input a vector of birth-death pairs.
- **/
- Persistence_landscape_on_grid( const std::vector< std::pair< double , double > >& p , double grid_min_ , double grid_max_ , size_t number_of_points_ );
-
- /**
- * Constructor that reads persistence intervals from file and creates persistence landscape. The format of the input file is the following: in each line we put birth-death pair. Last line is assumed
- * to be empty. Even if the points within a line are not ordered, they will be ordered while the input is read. The additional parameters of this procedure are: ranges of grid, resoltion of a grid
- * and the dimension of intervals that are need to be read from a file (in case of Gudhi format files).
- **/
- Persistence_landscape_on_grid(const char* filename , double grid_min_, double grid_max_ , size_t number_of_points_ , size_t dimension_ = 0 );
-
- /**
- * Constructor that reads persistence intervals from file and creates persistence landscape. The format of the input file is the following: in each line we put birth-death pair. Last line is assumed
- * to be empty. Even if the points within a line are not ordered, they will be ordered while the input is read. The additional parameter is the resoution of a grid. The remaning parameters are
- * calculated based on data.
- **/
- Persistence_landscape_on_grid(const char* filename , size_t number_of_points );
-
-
- /**
- * This procedure loads a landscape from file. It erase all the data that was previously stored in this landscape.
- **/
- void load_landscape_from_file( const char* filename );
-
-
- /**
- * The procedure stores a landscape to a file. The file can be later used by a procedure load_landscape_from_file.
- **/
- void print_to_file( const char* filename )const;
-
-
-
- /**
- * This function compute integral of the landscape (defined formally as sum of integrals on R of all landscape functions)
- **/
- double compute_integral_of_landscape()const
- {
- size_t maximal_level = this->number_of_nonzero_levels();
- double result = 0;
- for ( size_t i = 0 ; i != maximal_level ; ++i )
- {
- result += this->compute_integral_of_landscape(i);
- }
- return result;
- }
-
-
- /**
- * This function compute integral of the 'level'-level of a landscape.
- **/
- double compute_integral_of_landscape( size_t level )const
- {
- bool dbg = false;
- double result = 0;
- double dx = (this->grid_max - this->grid_min)/(double)(this->values_of_landscapes.size()-1);
-
- if ( dbg )
- {
- std::cerr << "this->grid_max : " << this->grid_max << std::endl;
- std::cerr << "this->grid_min : " << this->grid_min << std::endl;
- std::cerr << "this->values_of_landscapes.size() : " << this->values_of_landscapes.size() << std::endl;
- getchar();
- }
-
-
- double previous_x = this->grid_min-dx;
- double previous_y = 0;
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- double current_x = previous_x + dx;
- double current_y = 0;
- if ( this->values_of_landscapes[i].size() > level )current_y = this->values_of_landscapes[i][level];
-
- if ( dbg )
- {
- std::cerr << "this->values_of_landscapes[i].size() : " << this->values_of_landscapes[i].size() << " , level : " << level << std::endl;
- if ( this->values_of_landscapes[i].size() > level )std::cerr << "this->values_of_landscapes[i][level] : " << this->values_of_landscapes[i][level] << std::endl;
- std::cerr << "previous_y : " << previous_y << std::endl;
- std::cerr << "current_y : " << current_y << std::endl;
- std::cerr << "dx : " << dx << std::endl;
- std::cerr << "0.5*dx*( previous_y + current_y ); " << 0.5*dx*( previous_y + current_y ) << std::endl;
- }
-
- result += 0.5*dx*( previous_y + current_y );
- previous_x = current_x;
- previous_y = current_y;
- }
- return result;
- }
-
- /**
- * This function compute integral of the landscape p-th power of a landscape (defined formally as sum of integrals on R of p-th powers of all landscape functions)
- **/
- double compute_integral_of_landscape( double p )const
- {
- size_t maximal_level = this->number_of_nonzero_levels();
- double result = 0;
- for ( size_t i = 0 ; i != maximal_level ; ++i )
- {
- result += this->compute_integral_of_landscape(p,i);
- }
- return result;
- }
-
- /**
- * This function compute integral of the landscape p-th power of a level of a landscape (defined formally as sum of integrals on R of p-th powers of all landscape functions)
- **/
- double compute_integral_of_landscape( double p , size_t level )const
- {
- bool dbg = false;
-
- double result = 0;
- double dx = (this->grid_max - this->grid_min)/(double)(this->values_of_landscapes.size()-1);
- double previous_x = this->grid_min;
- double previous_y = 0;
- if ( this->values_of_landscapes[0].size() > level )previous_y = this->values_of_landscapes[0][level];
-
- if ( dbg )
- {
- std::cerr << "dx : " << dx << std::endl;
- std::cerr << "previous_x : " << previous_x << std::endl;
- std::cerr << "previous_y : " << previous_y << std::endl;
- std::cerr << "power : " << p << std::endl;
- getchar();
- }
-
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- double current_x = previous_x + dx;
- double current_y = 0;
- if ( this->values_of_landscapes[i].size() > level )current_y = this->values_of_landscapes[i][level];
-
- if ( dbg )std::cerr << "current_y : " << current_y << std::endl;
-
- if ( current_y == previous_y )continue;
-
- std::pair<double,double> coef = compute_parameters_of_a_line( std::make_pair( previous_x , previous_y ) , std::make_pair( current_x , current_y ) );
- double a = coef.first;
- double b = coef.second;
-
- if ( dbg )
- {
- std::cerr << "A line passing through points : (" << previous_x << "," << previous_y << ") and (" << current_x << "," << current_y << ") is : " << a << "x+" << b << std::endl;
- }
-
- //In this interval, the landscape has a form f(x) = ax+b. We want to compute integral of (ax+b)^p = 1/a * (ax+b)^{p+1}/(p+1)
- double value_to_add = 0;
- if ( a != 0 )
- {
- value_to_add = 1/(a*(p+1)) * ( pow((a*current_x+b),p+1) - pow((a*previous_x+b),p+1));
- }
- else
- {
- value_to_add = ( current_x - previous_x )*( pow(b,p) );
- }
- result += value_to_add;
- if ( dbg )
- {
- std::cerr << "Increasing result by : " << value_to_add << std::endl;
- std::cerr << "restult : " << result << std::endl;
- getchar();
- }
- previous_x = current_x;
- previous_y = current_y;
- }
- if ( dbg )std::cerr << "The total result is : " << result << std::endl;
- return result;
- }
-
- /**
- * Writing landscape into a stream. A i-th level landscape starts with a string "lambda_i". Then the discontinuity points of the landscapes follows.
- * Shall those points be joined with lines, we will obtain the i-th landscape function.
- **/
- friend std::ostream& operator<<(std::ostream& out, const Persistence_landscape_on_grid& land )
- {
- double dx = (land.grid_max - land.grid_min)/(double)(land.values_of_landscapes.size()-1);
- double x = land.grid_min;
- for ( size_t i = 0 ; i != land.values_of_landscapes.size() ; ++i )
- {
- out << x << " : ";
- for ( size_t j = 0 ; j != land.values_of_landscapes[i].size() ; ++j )
- {
- out << land.values_of_landscapes[i][j] << " ";
- }
- out << std::endl;
- x += dx;
- }
- return out;
- }
-
-
- /**
- * A function that computes the value of a landscape at a given point. The parameters of the function are: unsigned level and double x.
- * The procedure will compute the value of the level-landscape at the point x.
- **/
- double compute_value_at_a_given_point( unsigned level , double x )const
- {
- bool dbg = false;
- if ( (x < this->grid_min) || (x > this->grid_max) )return 0;
-
- //find a position of a vector closest to x:
- double dx = (this->grid_max - this->grid_min)/(double)(this->values_of_landscapes.size()-1);
- size_t position = size_t((x-this->grid_min)/dx);
-
- if ( dbg )
- {
- std::cerr << "This is a procedure compute_value_at_a_given_point \n";
- std::cerr << "level : " << level << std::endl;
- std::cerr << "x : " << x << std::endl;
- std::cerr << "psoition : " << position << std::endl;
- }
- //check if we are not exacly in the grid point:
- if ( almost_equal( position*dx+ this->grid_min , x) )
- {
- if ( this->values_of_landscapes[position].size() < level )
- {
- return this->values_of_landscapes[position][level];
- }
- else
- {
- return 0;
- }
- }
- //in the other case, approximate with a line:
- std::pair<double,double> line;
- if ( (this->values_of_landscapes[position].size() > level) && (this->values_of_landscapes[position+1].size() > level) )
- {
- line = compute_parameters_of_a_line( std::make_pair( position*dx+ this->grid_min , this->values_of_landscapes[position][level] ) , std::make_pair( (position+1)*dx+ this->grid_min , this->values_of_landscapes[position+1][level] ) );
- }
- else
- {
- if ( (this->values_of_landscapes[position].size() > level) || (this->values_of_landscapes[position+1].size() > level) )
- {
- if ( (this->values_of_landscapes[position].size() > level) )
- {
- line = compute_parameters_of_a_line( std::make_pair( position*dx+ this->grid_min , this->values_of_landscapes[position][level] ) , std::make_pair( (position+1)*dx+ this->grid_min , 0 ) );
- }
- else
- {
- //(this->values_of_landscapes[position+1].size() > level)
- line = compute_parameters_of_a_line( std::make_pair( position*dx+ this->grid_min , 0 ) , std::make_pair( (position+1)*dx+ this->grid_min , this->values_of_landscapes[position+1][level] ) );
- }
- }
- else
- {
- return 0;
- }
- }
- //compute the value of the linear function parametrized by line on a point x:
- return line.first*x+line.second;
- }
-
-
- /**
- *\private A function that compute sum of two landscapes.
- **/
- friend Persistence_landscape_on_grid add_two_landscapes ( const Persistence_landscape_on_grid& land1 , const Persistence_landscape_on_grid& land2 )
- {
- return operation_on_pair_of_landscapes_on_grid< std::plus<double> >(land1,land2);
- }
-
- /**
- *\private A function that compute difference of two landscapes.
- **/
- friend Persistence_landscape_on_grid subtract_two_landscapes ( const Persistence_landscape_on_grid& land1 , const Persistence_landscape_on_grid& land2 )
- {
- return operation_on_pair_of_landscapes_on_grid< std::minus<double> >(land1,land2);
- }
-
- /**
- * An operator +, that compute sum of two landscapes.
- **/
- friend Persistence_landscape_on_grid operator+( const Persistence_landscape_on_grid& first , const Persistence_landscape_on_grid& second )
- {
- return add_two_landscapes( first,second );
- }
-
- /**
- * An operator -, that compute difference of two landscapes.
- **/
- friend Persistence_landscape_on_grid operator-( const Persistence_landscape_on_grid& first , const Persistence_landscape_on_grid& second )
- {
- return subtract_two_landscapes( first,second );
- }
-
- /**
- * An operator * that allows multipilication of a landscape by a real number.
- **/
- friend Persistence_landscape_on_grid operator*( const Persistence_landscape_on_grid& first , double con )
- {
- return first.multiply_lanscape_by_real_number_not_overwrite(con);
- }
-
- /**
- * An operator * that allows multipilication of a landscape by a real number (order of parameters swapped).
- **/
- friend Persistence_landscape_on_grid operator*( double con , const Persistence_landscape_on_grid& first )
- {
- return first.multiply_lanscape_by_real_number_not_overwrite(con);
- }
-
- friend bool check_if_defined_on_the_same_domain( const Persistence_landscape_on_grid& land1, const Persistence_landscape_on_grid& land2 )
- {
- if ( land1.values_of_landscapes.size() != land2.values_of_landscapes.size() )return false;
- if ( land1.grid_min != land2.grid_min )return false;
- if ( land1.grid_max != land2.grid_max )return false;
- return true;
- }
-
- /**
- * Operator +=. The second parameter is persistnece landwscape.
- **/
- Persistence_landscape_on_grid operator += ( const Persistence_landscape_on_grid& rhs )
- {
- *this = *this + rhs;
- return *this;
- }
-
- /**
- * Operator -=. The second parameter is persistnece landwscape.
- **/
- Persistence_landscape_on_grid operator -= ( const Persistence_landscape_on_grid& rhs )
- {
- *this = *this - rhs;
- return *this;
- }
-
-
- /**
- * Operator *=. The second parameter is a real number by which the y values of all landscape functions are multiplied. The x-values remain unchanged.
- **/
- Persistence_landscape_on_grid operator *= ( double x )
- {
- *this = *this*x;
- return *this;
- }
-
- /**
- * Operator /=. The second parameter is a real number.
- **/
- Persistence_landscape_on_grid operator /= ( double x )
- {
- if ( x == 0 )throw( "In operator /=, division by 0. Program terminated." );
- *this = *this * (1/x);
- return *this;
- }
-
- /**
- * An operator to compare two persistence landscapes.
- **/
- bool operator == ( const Persistence_landscape_on_grid& rhs )const
- {
- bool dbg = true;
- if ( ! this->values_of_landscapes.size() == rhs.values_of_landscapes.size() )
- {
- if (dbg) std::cerr << "values_of_landscapes of incompatable sizes\n";
- return false;
- }
- if ( !almost_equal( this->grid_min , rhs.grid_min ) )
- {
- if (dbg) std::cerr << "grid_min not equal\n";
- return false;
- }
- if ( !almost_equal(this->grid_max,rhs.grid_max ) )
- {
- if (dbg) std::cerr << "grid_max not equal\n";
- return false;
- }
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- for ( size_t aa = 0 ; aa != this->values_of_landscapes[i].size() ; ++aa )
- {
- if ( !almost_equal( this->values_of_landscapes[i][aa] , rhs.values_of_landscapes[i][aa] ) )
- {
- if (dbg)
- {
- std::cerr << "Problem in the position : " << i << " of values_of_landscapes. \n";
- std::cerr << this->values_of_landscapes[i][aa] << " " << rhs.values_of_landscapes[i][aa] << std::endl;
- }
- return false;
- }
- }
- }
- return true;
- }
-
-
- /**
- * An operator to compare two persistence landscapes.
- **/
- bool operator != ( const Persistence_landscape_on_grid& rhs )const
- {
- return !((*this) == rhs);
- }
-
-
- /**
- * Computations of maximum (y) value of landscape.
- **/
- double compute_maximum()const
- {
- //since the function can only be entirely positive or negative, the maximal value will be an extremal value in the arrays:
- double max_value = -std::numeric_limits<double>::max();
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- if ( this->values_of_landscapes[i].size() )
- {
- if ( this->values_of_landscapes[i][0] > max_value )max_value = this->values_of_landscapes[i][0];
- if ( this->values_of_landscapes[i][ this->values_of_landscapes[i].size()-1 ] > max_value )max_value = this->values_of_landscapes[i][ this->values_of_landscapes[i].size()-1 ];
- }
- }
- return max_value;
- }
-
- /**
- * Computations of minimum and maximum value of landscape.
- **/
- std::pair<double,double> compute_minimum_maximum()const
- {
- //since the function can only be entirely positive or negative, the maximal value will be an extremal value in the arrays:
- double max_value = -std::numeric_limits<double>::max();
- double min_value = 0;
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- if ( this->values_of_landscapes[i].size() )
- {
- if ( this->values_of_landscapes[i][0] > max_value )max_value = this->values_of_landscapes[i][0];
- if ( this->values_of_landscapes[i][ this->values_of_landscapes[i].size()-1 ] > max_value )max_value = this->values_of_landscapes[i][ this->values_of_landscapes[i].size()-1 ];
-
- if ( this->values_of_landscapes[i][0] < min_value )min_value = this->values_of_landscapes[i][0];
- if ( this->values_of_landscapes[i][ this->values_of_landscapes[i].size()-1 ] < min_value )min_value = this->values_of_landscapes[i][ this->values_of_landscapes[i].size()-1 ];
- }
- }
- return std::make_pair(min_value , max_value);
- }
-
- /**
- * This procedure returns x-range of a given level persistence landscape. If a default value is used, the x-range
- * of 0th level landscape is given (and this range contains the ranges of all other landscapes).
- **/
- std::pair< double , double > get_x_range( size_t level = 0 )const
- {
- return std::make_pair( this->grid_min , this->grid_max );
- //std::pair< double , double > result;
- //if ( level < this->land.size() )
- //{
- // double dx = (this->grid_max - this->grid_min)/(double)this->values_of_landscapes.size();
- // size_t first_nonzero = 0;
- // while ( (first_nonzero != this->values_of_landscapes.size()) && (this->values_of_landscapes[level][first_nonzero] == 0) )++first_nonzero;
- //
- // if ( first_nonzero == 0 )
- // {
- // return std::make_pair( 0,0 );//this landscape is empty.
- // }
- //
- // size_t last_nonzero = 0;
- // while ( (last_nonzero != 0) && (this->values_of_landscapes[level][last_nonzero] == 0) )--last_nonzero;
- //
- // result = std::make_pair( this->grid_min +first_nonzero*dx , this->grid_max - last_nonzero*dx );
- //}
- //else
- //{
- // result = std::make_pair( 0,0 );
- //}
- //return result;
- }
-
- /**
- * This procedure returns y-range of a persistence landscape. If a default value is used, the y-range
- * of 0th level landscape is given (and this range contains the ranges of all other landscapes).
- **/
- std::pair< double , double > get_y_range( size_t level = 0 )const
- {
- return this->compute_minimum_maximum();
- //std::pair< double , double > result;
- //if ( level < this->land.size() )
- //{
- // result = this->compute_minimum_maximum()
- //}
- //else
- //{
- // result = std::make_pair( 0,0 );
- //}
- //return result;
- }
-
- /**
- * This function computes maximal lambda for which lambda-level landscape is nonzero.
- **/
- size_t number_of_nonzero_levels()const
- {
- size_t result = 0;
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- if ( this->values_of_landscapes[i].size() > result )result = this->values_of_landscapes[i].size();
- }
- return result;
- }
-
- /**
- * Computations of a L^i norm of landscape, where i is the input parameter.
- **/
- double compute_norm_of_landscape( double i )const
- {
- std::vector< std::pair< double , double > > p;
- Persistence_landscape_on_grid l(p,this->grid_min,this->grid_max,this->values_of_landscapes.size()-1);
-
- if ( i < std::numeric_limits<double>::max() )
- {
- return compute_distance_of_landscapes_on_grid(*this,l,i);
- }
- else
- {
- return compute_max_norm_distance_of_landscapes(*this,l);
- }
- }
-
- /**
- * An operator to compute the value of a landscape in the level 'level' at the argument 'x'.
- **/
- double operator()(unsigned level,double x)const{return this->compute_value_at_a_given_point(level,x);}
-
- /**
- * Computations of L^{\infty} distance between two landscapes.
- **/
- friend double compute_max_norm_distance_of_landscapes( const Persistence_landscape_on_grid& first, const Persistence_landscape_on_grid& second );
- //friend double compute_max_norm_distance_of_landscapes( const Persistence_landscape_on_grid& first, const Persistence_landscape_on_grid& second , unsigned& nrOfLand , double&x , double& y1, double& y2 );
-
-
-
-
- /**
- * Function to compute absolute value of a PL function. The representation of persistence landscapes allow to store general PL-function. When computing distance betwen two landscapes, we compute difference between
- * them. In this case, a general PL-function with negative value can appear as a result. Then in order to compute distance, we need to take its absolute value. This is the purpose of this procedure.
- **/
- void abs()
- {
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- for ( size_t j = 0 ; j != this->values_of_landscapes[i].size() ; ++j )
- {
- this->values_of_landscapes[i][j] = std::abs( this->values_of_landscapes[i][j] );
- }
- }
- }
-
- /**
- * Computes the number of landscape functions.
- **/
- size_t size()const{return this->number_of_nonzero_levels(); }
-
- /**
- * Computate maximal value of lambda-level landscape.
- **/
- double find_max( unsigned lambda )const
- {
- double max_value = -std::numeric_limits<double>::max();
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- if ( this->values_of_landscapes[i].size() > lambda )
- {
- if ( this->values_of_landscapes[i][lambda] > max_value )max_value = this->values_of_landscapes[i][lambda];
- }
- }
- return max_value;
- }
-
- /**
- * Function to compute inner (scalar) product of two landscapes.
- **/
- friend double compute_inner_product( const Persistence_landscape_on_grid& l1 , const Persistence_landscape_on_grid& l2 )
- {
- if ( !check_if_defined_on_the_same_domain(l1,l2) )throw "Landscapes are not defined on the same grid, the program will now terminate";
- size_t maximal_level = l1.number_of_nonzero_levels();
- double result = 0;
- for ( size_t i = 0 ; i != maximal_level ; ++i )
- {
- result += compute_inner_product(l1,l2,i);
- }
- return result;
- }
-
-
-
- /**
- * Function to compute inner (scalar) product of given levels of two landscapes.
- **/
- friend double compute_inner_product( const Persistence_landscape_on_grid& l1 , const Persistence_landscape_on_grid& l2 , size_t level )
- {
- bool dbg = false;
-
- if ( !check_if_defined_on_the_same_domain(l1,l2) )throw "Landscapes are not defined on the same grid, the program will now terminate";
- double result = 0;
-
- double dx = (l1.grid_max - l1.grid_min)/(double)(l1.values_of_landscapes.size()-1);
-
- double previous_x = l1.grid_min-dx;
- double previous_y_l1 = 0;
- double previous_y_l2 = 0;
- for ( size_t i = 0 ; i != l1.values_of_landscapes.size() ; ++i )
- {
- if ( dbg )std::cerr << "i : " << i << std::endl;
-
- double current_x = previous_x + dx;
- double current_y_l1 = 0;
- if ( l1.values_of_landscapes[i].size() > level )current_y_l1 = l1.values_of_landscapes[i][level];
-
- double current_y_l2 = 0;
- if ( l2.values_of_landscapes[i].size() > level )current_y_l2 = l2.values_of_landscapes[i][level];
-
- if ( dbg )
- {
- std::cerr << "previous_x : " << previous_x << std::endl;
- std::cerr << "previous_y_l1 : " << previous_y_l1 << std::endl;
- std::cerr << "current_y_l1 : " << current_y_l1 << std::endl;
- std::cerr << "previous_y_l2 : " << previous_y_l2 << std::endl;
- std::cerr << "current_y_l2 : " << current_y_l2 << std::endl;
- }
-
- std::pair<double,double> l1_coords = compute_parameters_of_a_line( std::make_pair( previous_x , previous_y_l1 ) , std::make_pair( current_x , current_y_l1 ) );
- std::pair<double,double> l2_coords = compute_parameters_of_a_line( std::make_pair( previous_x , previous_y_l2 ) , std::make_pair( current_x , current_y_l2 ) );
-
- //let us assume that the first line is of a form y = ax+b, and the second one is of a form y = cx + d. Then here are a,b,c,d:
- double a = l1_coords.first;
- double b = l1_coords.second;
-
- double c = l2_coords.first;
- double d = l2_coords.second;
-
- if ( dbg )
- {
- std::cerr << "Here are the formulas for a line: \n";
- std::cerr << "a : " << a << std::endl;
- std::cerr << "b : " << b << std::endl;
- std::cerr << "c : " << c << std::endl;
- std::cerr << "d : " << d << std::endl;
- }
-
- //now, to compute the inner product in this interval we need to compute the integral of (ax+b)(cx+d) = acx^2 + (ad+bc)x + bd in the interval from previous_x to current_x:
- //The integal is ac/3*x^3 + (ac+bd)/2*x^2 + bd*x
-
- double added_value = (a*c/3*current_x*current_x*current_x + (a*d+b*c)/2*current_x*current_x + b*d*current_x)-
- (a*c/3*previous_x*previous_x*previous_x + (a*d+b*c)/2*previous_x*previous_x + b*d*previous_x);
-
- if ( dbg )
- {
- std::cerr << "Value of the integral on the left end ie : " << previous_x << " is : " << a*c/3*previous_x*previous_x*previous_x + (a*d+b*c)/2*previous_x*previous_x + b*d*previous_x << std::endl;
- std::cerr << "Value of the integral on the right end i.e. : " << current_x << " is " << a*c/3*current_x*current_x*current_x + (a*d+b*c)/2*current_x*current_x + b*d*current_x << std::endl;
- }
-
- result += added_value;
-
- if ( dbg )
- {
- std::cerr << "added_value : " << added_value << std::endl;
- std::cerr << "result : " << result << std::endl;
- getchar();
- }
-
-
- previous_x = current_x;
- previous_y_l1 = current_y_l1;
- previous_y_l2 = current_y_l2;
-
- }
- return result;
- }
-
-
- /**
- * Computations of L^{p} distance between two landscapes on a grid. p is the parameter of the procedure.
- * FIXME: Note that, due to the grid representation, the method below may give non--accurate results in case when the landscape P and Q the difference of which we want to compute
- * are interxsecting. This is a consequence of a general way they are computed. In the future, an integral of absolute value of a difference of P and Q will be given as a separated
- * function to fix that inaccuracy.
- **/
- friend double compute_distance_of_landscapes_on_grid( const Persistence_landscape_on_grid& first, const Persistence_landscape_on_grid& second , double p )
- {
- bool dbg = false;
- //This is what we want to compute: (\int_{- \infty}^{+\infty}| first-second |^p)^(1/p). We will do it one step at a time:
-
- if ( dbg )
- {
- std::cerr << "first : " << first << std::endl;
- std::cerr << "second : " << second << std::endl;
- getchar();
- }
-
- //first-second :
- Persistence_landscape_on_grid lan = first-second;
-
- if ( dbg )
- {
- std::cerr << "Difference : " << lan << std::endl;
- }
-
- //| first-second |:
- lan.abs();
-
- if ( dbg )
- {
- std::cerr << "Abs : " << lan << std::endl;
- }
-
- if ( p < std::numeric_limits< double >::max() )
- {
- //\int_{- \infty}^{+\infty}| first-second |^p
- double result;
- if ( p != 1 )
- {
- if (dbg){std::cerr << "p : " << p << std::endl; getchar();}
- result = lan.compute_integral_of_landscape( (double)p );
- if (dbg){std::cerr << "integral : " << result << std::endl;getchar();}
- }
- else
- {
- result = lan.compute_integral_of_landscape();
- if (dbg){std::cerr << "integral, wihtout power : " << result << std::endl;getchar();}
- }
- //(\int_{- \infty}^{+\infty}| first-second |^p)^(1/p)
- return pow( result , 1/(double)p );
- }
- else
- {
- //p == infty
- return lan.compute_maximum();
- }
- }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- //Functions that are needed for that class to implement the concept.
-
- /**
- * The number of projections to R is defined to the number of nonzero landscape functions. I-th projection is an integral of i-th landscape function over whole R.
- * This function is required by the Real_valued_topological_data concept.
- **/
- double project_to_R( int number_of_function )const
- {
- return this->compute_integral_of_landscape( (size_t)number_of_function );
- }
-
- /**
- * The function gives the number of possible projections to R. This function is required by the Real_valued_topological_data concept.
- **/
- size_t number_of_projections_to_R()const
- {
- return number_of_functions_for_projections_to_reals;
- }
-
-
-
-
- /**
- * This function produce a vector of doubles based on a landscape. It is required in a concept Vectorized_topological_data
- */
- std::vector<double> vectorize( int number_of_function )const
- {
- //TODO, think of something smarter over here
- if ( ( number_of_function < 0 ) || ( (size_t)number_of_function >= this->values_of_landscapes.size() ) )
- {
- throw "Wrong number of function\n";
- }
- std::vector<double> v = this->values_of_landscapes[ number_of_function ];
- return v;
- }
-
- /**
- * This function return the number of functions that allows vectorization of persistence laandscape. It is required in a concept Vectorized_topological_data.
- **/
- size_t number_of_vectorize_functions()const
- {
- return number_of_functions_for_vectorization;
- }
-
-
-
-
-
- /**
- * A function to compute averaged persistence landscape on a grid, based on vector of persistence landscapes on grid.
- * This function is required by Topological_data_with_averages concept.
- **/
- void compute_average( const std::vector< Persistence_landscape_on_grid* >& to_average )
- {
-
- bool dbg = false;
- //After execution of this procedure, the average is supposed to be in the current object. To make sure that this is the case, we need to do some cleaning first.
- this->values_of_landscapes .clear();
- this->grid_min = this->grid_max = 0;
-
- //if there is nothing to averate, then the average is a zero landscape.
- if ( to_average.size() == 0 )return;
-
- //now we need to check if the grids in all objects of to_average are the same:
- for ( size_t i = 0 ; i != to_average.size() ; ++i )
- {
- if ( !check_if_defined_on_the_same_domain(*(to_average[0]),*(to_average[i])) )throw "Two grids are not compatible";
- }
-
- this->values_of_landscapes = std::vector< std::vector<double> >( (to_average[0])->values_of_landscapes.size() );
- this->grid_min = (to_average[0])->grid_min;
- this->grid_max = (to_average[0])->grid_max;
-
- if ( dbg )
- {
- std::cerr << "Computations of average. The data from the current landscape have been cleared. We are ready to do the computations. \n";
- }
-
- //for every point in the grid:
- for ( size_t grid_point = 0 ; grid_point != (to_average[0])->values_of_landscapes.size() ; ++grid_point )
- {
-
- //set up a vector of the correct size:
- size_t maximal_size_of_vector = 0;
- for ( size_t land_no = 0 ; land_no != to_average.size() ; ++land_no )
- {
- if ( (to_average[land_no])->values_of_landscapes[grid_point].size() > maximal_size_of_vector )
- maximal_size_of_vector = (to_average[land_no])->values_of_landscapes[grid_point].size();
- }
- this->values_of_landscapes[grid_point] = std::vector<double>( maximal_size_of_vector );
-
- if ( dbg )
- {
- std::cerr << "We are considering the point : " << grid_point << " of the grid. In this point, there are at most : " << maximal_size_of_vector << " nonzero landscape functions \n";
- }
-
- //and compute an arythmetic average:
- for ( size_t land_no = 0 ; land_no != to_average.size() ; ++land_no )
- {
- //summing:
- for ( size_t i = 0 ; i != (to_average[land_no])->values_of_landscapes[grid_point].size() ; ++i )
- {
- //compute the average in a smarter way.
- this->values_of_landscapes[grid_point][i] += (to_average[land_no])->values_of_landscapes[grid_point][i];
- }
- }
- //normalizing:
- for ( size_t i = 0 ; i != this->values_of_landscapes[grid_point].size() ; ++i )
- {
- this->values_of_landscapes[grid_point][i] /= (double)to_average.size();
- }
- }
- }//compute_average
-
-
- /**
- * A function to compute distance between persistence landscape on a grid.
- * The parameter of this functionis a Persistence_landscape_on_grid.
- * This function is required in Topological_data_with_distances concept.
- * For max norm distance, set power to std::numeric_limits<double>::max()
- **/
- double distance( const Persistence_landscape_on_grid& second , double power = 1 )const
- {
- if ( power < std::numeric_limits<double>::max() )
- {
- return compute_distance_of_landscapes_on_grid( *this , second , power );
- }
- else
- {
- return compute_max_norm_distance_of_landscapes( *this , second );
- }
- }
-
- /**
- * A function to compute scalar product of persistence landscape on a grid.
- * The parameter of this functionis a Persistence_landscape_on_grid.
- * This function is required in Topological_data_with_scalar_product concept.
- **/
- double compute_scalar_product( const Persistence_landscape_on_grid& second )
- {
- return compute_inner_product( (*this) , second );
- }
-
- //end of implementation of functions needed for concepts.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- /**
- * A function that returns values of landsapes. It can be used for vizualization
- **/
- std::vector< std::vector< double > > output_for_visualization()const
- {
- return this->values_of_landscapes;
- }
-
- /**
- * function used to create a gnuplot script for visualization of landscapes. Over here we need to specify which landscapes do we want to plot.
- * In addition, the user may specify the range (min and max) where landscape is plot. The fefault values for min and max are std::numeric_limits<double>::max(). If the procedure detect those
- * values, it will determine the range so that the whole landscape is supported there. If at least one min or max value is different from std::numeric_limits<double>::max(), then the values
- * provided by the user will be used.
- **/
- void plot( const char* filename , size_t from_ , size_t to_ )const
- {
- this->plot( filename , std::numeric_limits<double>::max() , std::numeric_limits<double>::max(), std::numeric_limits<double>::max() , std::numeric_limits<double>::max() , from_ , to_ );
- }
-
- /**
- * function used to create a gnuplot script for visualization of landscapes. Over here we can restrict also x and y range of the landscape.
- **/
- void plot( const char* filename, double min_x = std::numeric_limits<double>::max() , double max_x = std::numeric_limits<double>::max() , double min_y = std::numeric_limits<double>::max() , double max_y = std::numeric_limits<double>::max() , size_t from_ = std::numeric_limits<size_t>::max(), size_t to_= std::numeric_limits<size_t>::max() )const;
-
-
-protected:
- double grid_min;
- double grid_max;
- std::vector< std::vector< double > > values_of_landscapes;
- size_t number_of_functions_for_vectorization;
- size_t number_of_functions_for_projections_to_reals;
-
- void set_up_numbers_of_functions_for_vectorization_and_projections_to_reals()
- {
- //warning, this function can be only called after filling in the values_of_landscapes vector.
- this->number_of_functions_for_vectorization = this->values_of_landscapes.size();
- this->number_of_functions_for_projections_to_reals = this->values_of_landscapes.size();
- }
-
- void set_up_values_of_landscapes( const std::vector< std::pair< double , double > >& p , double grid_min_ , double grid_max_ , size_t number_of_points_ );
- template < typename oper > friend Persistence_landscape_on_grid operation_on_pair_of_landscapes_on_grid( const Persistence_landscape_on_grid& land1 , const Persistence_landscape_on_grid& land2 );
- Persistence_landscape_on_grid multiply_lanscape_by_real_number_not_overwrite( double x )const;
-};
-
-
-void Persistence_landscape_on_grid::set_up_values_of_landscapes( const std::vector< std::pair< double , double > >& p , double grid_min_ , double grid_max_ , size_t number_of_points_ )
-{
- bool dbg = false;
- if ( dbg )
- {
- std::cerr << "Here is the procedure : set_up_values_of_landscapes. The parameters are : grid_min_ : " << grid_min_ << ", grid_max_ : " << grid_max_ << ", number_of_points_ : " << number_of_points_ << std::endl;
- //getchar();
- std::cerr << "Here are the intervals at our disposal : \n";
- for ( size_t i = 0 ; i != p.size() ; ++i )
- {
- std::cerr << p[i].first << " , " << p[i].second << std::endl;
- }
- }
-
- if ( (grid_min_ == std::numeric_limits<double>::max()) || (grid_min_ == std::numeric_limits<double>::max()) )
- {
- //in this case, we need to find grid_min_ and grid_min_ based
- }
-
- this->values_of_landscapes = std::vector< std::vector< double > >( number_of_points_+1 );
- this->grid_min = grid_min_;
- this->grid_max = grid_max_;
-
- if ( grid_max_ <= grid_min_ )
- {
- throw "Wrong parameters of grid_min and grid_max given to the procedure. THe grid have negative, or zero size. The program will now terminate.\n";
- }
-
- double dx = ( grid_max_ - grid_min_ )/(double)(number_of_points_);
- //for every interval in the diagram:
- for ( size_t int_no = 0 ; int_no != p.size() ; ++int_no )
- {
- size_t grid_interval_begin = (p[int_no].first-grid_min_)/dx;
- size_t grid_interval_end = (p[int_no].second-grid_min_)/dx;
- size_t grid_interval_midpoint = (size_t)(0.5*(grid_interval_begin+grid_interval_end));
-
- if ( dbg )
- {
- std::cerr << "Considering an interval : " << p[int_no].first << "," << p[int_no].second << std::endl;
-
- std::cerr << "grid_interval_begin : " << grid_interval_begin << std::endl;
- std::cerr << "grid_interval_end : " << grid_interval_end << std::endl;
- std::cerr << "grid_interval_midpoint : " << grid_interval_midpoint << std::endl;
- }
-
- double landscape_value = dx;
- for ( size_t i = grid_interval_begin+1 ; i < grid_interval_midpoint ; ++i )
- {
- if ( dbg )
- {
- std::cerr << "Adding landscape value (going up) for a point : " << i << " equal : " << landscape_value << std::endl;
- }
- this->values_of_landscapes[i].push_back( landscape_value );
- landscape_value += dx;
- }
- for ( size_t i = grid_interval_midpoint ; i <= grid_interval_end ; ++i )
- {
- if ( landscape_value > 0 )
- {
- this->values_of_landscapes[i].push_back( landscape_value );
- if ( dbg )
- {
- std::cerr << "AAdding landscape value (going down) for a point : " << i << " equal : " << landscape_value << std::endl;
- }
- }
- landscape_value -= dx;
- }
- }
-
- //and now we need to sort the values:
- for ( size_t pt = 0 ; pt != this->values_of_landscapes.size() ; ++pt )
- {
- std::sort( this->values_of_landscapes[pt].begin() , this->values_of_landscapes[pt].end() , std::greater<double>() );
- }
-}//set_up_values_of_landscapes
-
-Persistence_landscape_on_grid::Persistence_landscape_on_grid( const std::vector< std::pair< double , double > >& p , double grid_min_ , double grid_max_ , size_t number_of_points_ )
-{
- this->set_up_values_of_landscapes( p , grid_min_ , grid_max_ , number_of_points_ );
-}//Persistence_landscape_on_grid
-
-
-Persistence_landscape_on_grid::Persistence_landscape_on_grid(const char* filename , double grid_min_, double grid_max_ , size_t number_of_points_ , size_t dimension )
-{
- //standard file with barcode
- std::vector< std::pair< double , double > > p = read_standard_file( filename );
- //gudhi file with barcode
- //std::vector< std::pair< double , double > > p = read_gudhi_file( filename , dimension );
-
- this->set_up_values_of_landscapes( p , grid_min_ , grid_max_ , number_of_points_ );
-}
-
-Persistence_landscape_on_grid::Persistence_landscape_on_grid(const char* filename , size_t number_of_points_ )
-{
- //standard file with barcode
- std::vector< std::pair< double , double > > p = read_standard_file( filename );
- //gudhi file with barcode
- //std::vector< std::pair< double , double > > p = read_gudhi_file( filename , dimension );
-
- double grid_min_ = std::numeric_limits<double>::max();
- double grid_max_ = -std::numeric_limits<double>::max();
- for ( size_t i = 0 ; i != p.size() ; ++i )
- {
- if ( p[i].first < grid_min_ )grid_min_ = p[i].first;
- if ( p[i].second > grid_max_ )grid_max_ = p[i].second;
- }
- this->set_up_values_of_landscapes( p , grid_min_ , grid_max_ , number_of_points_ );
-}
-
-void Persistence_landscape_on_grid::load_landscape_from_file( const char* filename )
-{
- //check if the file exist.
- if ( !( access( filename, F_OK ) != -1 ) )
- {
- std::cerr << "The file : " << filename << " do not exist. The program will now terminate \n";
- throw "The file from which you are trying to read the persistence landscape do not exist. The program will now terminate \n";
- }
- std::ifstream in;
- in.open( filename );
-
- size_t number_of_points_in_the_grid = 0;
- in >> this->grid_min >> this->grid_max >> number_of_points_in_the_grid;
-
- std::vector< std::vector< double > > v(number_of_points_in_the_grid);
- std::string line;
- std::getline(in, line);
- double number;
- for ( size_t i = 0 ; i != number_of_points_in_the_grid ; ++i )
- {
- //read a line of a file and convert it to a vector.
- std::vector< double > vv;
- std::getline(in, line);
- //std::cerr << "Reading line : " << line << std::endl;getchar();
- std::istringstream stream(line);
- while (stream >> number)
- {
- vv.push_back(number);
- }
- v[i] = vv;
- }
- this->values_of_landscapes = v;
- in.close();
-}
-
-void Persistence_landscape_on_grid::print_to_file( const char* filename )const
-{
- std::ofstream out;
- out.open( filename );
-
- //first we store the parameters of the grid:
- out << grid_min << std::endl << grid_max << std::endl << this->values_of_landscapes.size() << std::endl;
-
- //and now in the following lines, the values of this->values_of_landscapes for the following arguments:
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- for ( size_t j = 0 ; j != this->values_of_landscapes[i].size() ; ++j )
- {
- out << this->values_of_landscapes[i][j] << " ";
- }
- out << std::endl;
- }
-
- out.close();
-}
-
-void Persistence_landscape_on_grid::plot( const char* filename, double min_x , double max_x , double min_y , double max_y, size_t from_ , size_t to_ )const
-{
- //this program create a gnuplot script file that allows to plot persistence diagram.
- std::ofstream out;
-
- std::ostringstream nameSS;
- nameSS << filename << "_GnuplotScript";
- std::string nameStr = nameSS.str();
- out.open( nameStr );
-
- if ( min_x == max_x )
- {
- std::pair<double,double> min_max = compute_minimum_maximum();
- out << "set xrange [" << this->grid_min << " : " << this->grid_max << "]" << std::endl;
- out << "set yrange [" << min_max.first << " : " << min_max.second << "]" << std::endl;
- }
- else
- {
- out << "set xrange [" << min_x << " : " << max_x << "]" << std::endl;
- out << "set yrange [" << min_y << " : " << max_y << "]" << std::endl;
- }
-
- size_t number_of_nonzero_levels = this->number_of_nonzero_levels();
- double dx = ( this->grid_max - this->grid_min )/((double)this->values_of_landscapes.size()-1);
-
-
- size_t from = 0;
- if ( from_ != std::numeric_limits<size_t>::max() )
- {
- if ( from_ < number_of_nonzero_levels )
- {
- from = from_;
- }
- else
- {
- return;
- }
- }
- size_t to = number_of_nonzero_levels;
- if ( to_ != std::numeric_limits<size_t>::max() )
- {
- if ( to_ < number_of_nonzero_levels )
- {
- to = to_;
- }
- }
-
-
- out << "plot ";
- for ( size_t lambda= from ; lambda != to ; ++lambda )
- {
- //out << " '-' using 1:2 title 'l" << lambda << "' with lp";
- out << " '-' using 1:2 notitle with lp";
- if ( lambda+1 != to )
- {
- out << ", \\";
- }
- out << std::endl;
- }
-
- for ( size_t lambda = from ; lambda != to ; ++lambda )
- {
- double point = this->grid_min;
- for ( size_t i = 0 ; i != this->values_of_landscapes.size() ; ++i )
- {
- double value = 0;
- if ( this->values_of_landscapes[i].size() > lambda )
- {
- value = this->values_of_landscapes[i][lambda];
- }
- out << point << " " << value << std::endl;
- point += dx;
- }
- out << "EOF" << std::endl;
- }
- std::cout << "Gnuplot script to visualize persistence diagram written to the file: " << nameStr << ". Type load '" << nameStr << "' in gnuplot to visualize." << std::endl;
-}
-
-template < typename T >
-Persistence_landscape_on_grid operation_on_pair_of_landscapes_on_grid ( const Persistence_landscape_on_grid& land1 , const Persistence_landscape_on_grid& land2 )
-{
- //first we need to check if the domains are the same:
- if ( !check_if_defined_on_the_same_domain(land1,land2) )throw "Two grids are not compatible";
-
- T oper;
- Persistence_landscape_on_grid result;
- result.values_of_landscapes = std::vector< std::vector< double > >( land1.values_of_landscapes.size() );
- result.grid_min = land1.grid_min;
- result.grid_max = land1.grid_max;
-
- //now we perorm the operations:
- for ( size_t grid_point = 0 ; grid_point != land1.values_of_landscapes.size() ; ++grid_point )
- {
- result.values_of_landscapes[grid_point] = std::vector< double >( std::max( land1.values_of_landscapes[grid_point].size() , land2.values_of_landscapes[grid_point].size() ) );
- for ( size_t lambda = 0 ; lambda != std::max( land1.values_of_landscapes[grid_point].size() , land2.values_of_landscapes[grid_point].size() ) ; ++lambda )
- {
- double value1 = 0;
- double value2 = 0;
- if ( lambda < land1.values_of_landscapes[grid_point].size() )value1 = land1.values_of_landscapes[grid_point][lambda];
- if ( lambda < land2.values_of_landscapes[grid_point].size() )value2 = land2.values_of_landscapes[grid_point][lambda];
- result.values_of_landscapes[grid_point][lambda] = oper( value1 , value2 );
- }
- }
-
- return result;
-}
-
-Persistence_landscape_on_grid Persistence_landscape_on_grid::multiply_lanscape_by_real_number_not_overwrite( double x )const
-{
- Persistence_landscape_on_grid result;
- result.values_of_landscapes = std::vector< std::vector< double > >( this->values_of_landscapes.size() );
- result.grid_min = this->grid_min;
- result.grid_max = this->grid_max;
-
- for ( size_t grid_point = 0 ; grid_point != this->values_of_landscapes.size() ; ++grid_point )
- {
- result.values_of_landscapes[grid_point] = std::vector< double >( this->values_of_landscapes[grid_point].size() );
- for ( size_t i = 0 ; i != this->values_of_landscapes[grid_point].size() ; ++i )
- {
- result.values_of_landscapes[grid_point][i] = x*this->values_of_landscapes[grid_point][i];
- }
- }
-
- return result;
-}
-
-double compute_max_norm_distance_of_landscapes( const Persistence_landscape_on_grid& first, const Persistence_landscape_on_grid& second )
-{
- double result = 0;
-
- //first we need to check if first and second is defined on the same domain"
- if ( !check_if_defined_on_the_same_domain(first, second) )throw "Two grids are not compatible";
-
- for ( size_t i = 0 ; i != first.values_of_landscapes.size() ; ++i )
- {
- for ( size_t j = 0 ; j != std::min( first.values_of_landscapes[i].size() , second.values_of_landscapes[i].size() ) ; ++j )
- {
- if ( result < abs( first.values_of_landscapes[i][j] - second.values_of_landscapes[i][j] ) )
- {
- result = abs( first.values_of_landscapes[i][j] - second.values_of_landscapes[i][j] );
- }
- }
- if ( first.values_of_landscapes[i].size() == std::min( first.values_of_landscapes[i].size() , second.values_of_landscapes[i].size() ) )
- {
- for ( size_t j = first.values_of_landscapes[i].size() ; j != second.values_of_landscapes[i].size() ; ++j )
- {
- if ( result < second.values_of_landscapes[i][j] )result = second.values_of_landscapes[i][j];
- }
- }
- if ( second.values_of_landscapes[i].size() == std::min( first.values_of_landscapes[i].size() , second.values_of_landscapes[i].size() ) )
- {
- for ( size_t j = second.values_of_landscapes[i].size() ; j != first.values_of_landscapes[i].size() ; ++j )
- {
- if ( result < first.values_of_landscapes[i][j] )result = first.values_of_landscapes[i][j];
- }
- }
- }
- return result;
-}
-
-
-
-}//namespace Gudhi_stat
-}//namespace Gudhi
-
-#endif