summaryrefslogtreecommitdiff
path: root/src/Gudhi_stat/include/gudhi/persistence_representations/Persistence_landscape.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Gudhi_stat/include/gudhi/persistence_representations/Persistence_landscape.h')
-rw-r--r--src/Gudhi_stat/include/gudhi/persistence_representations/Persistence_landscape.h1492
1 files changed, 1492 insertions, 0 deletions
diff --git a/src/Gudhi_stat/include/gudhi/persistence_representations/Persistence_landscape.h b/src/Gudhi_stat/include/gudhi/persistence_representations/Persistence_landscape.h
new file mode 100644
index 00000000..c71eb3d2
--- /dev/null
+++ b/src/Gudhi_stat/include/gudhi/persistence_representations/Persistence_landscape.h
@@ -0,0 +1,1492 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Pawel Dlotko
+ *
+ * Copyright (C) 2015 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+
+#ifndef Persistence_landscapes_H
+#define Persistence_landscapes_H
+
+//standard include
+#include <cmath>
+#include <iostream>
+#include <vector>
+#include <limits>
+#include <fstream>
+#include <sstream>
+#include <algorithm>
+#include <unistd.h>
+
+
+//gudhi include
+#include <gudhi/read_persitence_from_file.h>
+#include <gudhi/common_gudhi_stat.h>
+
+
+
+
+namespace Gudhi
+{
+namespace Gudhi_stat
+{
+
+
+
+
+
+
+/**
+ * A clas implementing persistence landascpes data structures. For theroretical desciritpion, please consult a paper ''Statistical topological data analysis using persistence landscapes'' by Peter Bubenik.
+ * For details of algorithms, please consult ''A persistence landscapes toolbox for topological statistics'' by Peter Bubenik and Pawel Dlotko.
+ * Persistence landscapes allow vertorization, computations of distances, computations of projections to Real, computations of averages and scalar products. Therefore they implement suitable interfaces.
+ * It implements the following concepts: Vectorized_topological_data, Topological_data_with_distances, Real_valued_topological_data, Topological_data_with_averages, Topological_data_with_scalar_product
+**/
+class Persistence_landscape
+{
+public:
+ /**
+ * Default constructor.
+ **/
+ Persistence_landscape()
+ {
+ this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
+ }
+
+ /**
+ * Constructor that takes as an input a vector of birth-death pairs.
+ **/
+ Persistence_landscape( const std::vector< std::pair< double , double > >& p );
+
+ /**
+ * Constructor that reads persistence intervals from file and creates persistence landscape. The format of the input file is the following: in each line we put birth-death pair. Last line is assumed
+ * to be empty. Even if the points within a line are not ordered, they will be ordered while the input is read.
+ **/
+ Persistence_landscape(const char* filename , size_t dimension = 0);
+
+
+
+ /**
+ * This procedure loads a landscape from file. It erase all the data that was previously stored in this landscape.
+ **/
+ void load_landscape_from_file( const char* filename );
+
+
+ /**
+ * The procedure stores a landscape to a file. The file can be later used by a procedure load_landscape_from_file.
+ **/
+ void print_to_file( const char* filename )const;
+
+
+
+ /**
+ * This function compute integral of the landscape (defined formally as sum of integrals on R of all landscape functions)
+ **/
+ double compute_integral_of_landscape()const;
+
+
+ /**
+ * This function compute integral of the 'level'-level of a landscape.
+ **/
+ double compute_integral_of_a_level_of_a_landscape( size_t level )const;
+
+
+ /**
+ * This function compute integral of the landscape p-th power of a landscape (defined formally as sum of integrals on R of p-th powers of all landscape functions)
+ **/
+ double compute_integral_of_landscape( double p )const;//this function compute integral of p-th power of landscape.
+
+
+ /**
+ * A function that computes the value of a landscape at a given point. The parameters of the function are: unsigned level and double x.
+ * The procedure will compute the value of the level-landscape at the point x.
+ **/
+ double compute_value_at_a_given_point( unsigned level , double x )const;
+
+ /**
+ * Writing landscape into a stream. A i-th level landscape starts with a string "lambda_i". Then the discontinuity points of the landscapes follows.
+ * Shall those points be joined with lines, we will obtain the i-th landscape function.
+ **/
+ friend std::ostream& operator<<(std::ostream& out, Persistence_landscape& land );
+
+
+
+
+
+ /**
+ *\private A function that compute sum of two landscapes.
+ **/
+ friend Persistence_landscape add_two_landscapes ( const Persistence_landscape& land1 , const Persistence_landscape& land2 )
+ {
+ return operation_on_pair_of_landscapes< std::plus<double> >(land1,land2);
+ }
+
+ /**
+ *\private A function that compute difference of two landscapes.
+ **/
+ friend Persistence_landscape subtract_two_landscapes ( const Persistence_landscape& land1 , const Persistence_landscape& land2 )
+ {
+ return operation_on_pair_of_landscapes< std::minus<double> >(land1,land2);
+ }
+
+ /**
+ * An operator +, that compute sum of two landscapes.
+ **/
+ friend Persistence_landscape operator+( const Persistence_landscape& first , const Persistence_landscape& second )
+ {
+ return add_two_landscapes( first,second );
+ }
+
+ /**
+ * An operator -, that compute difference of two landscapes.
+ **/
+ friend Persistence_landscape operator-( const Persistence_landscape& first , const Persistence_landscape& second )
+ {
+ return subtract_two_landscapes( first,second );
+ }
+
+ /**
+ * An operator * that allows multipilication of a landscape by a real number.
+ **/
+ friend Persistence_landscape operator*( const Persistence_landscape& first , double con )
+ {
+ return first.multiply_lanscape_by_real_number_not_overwrite(con);
+ }
+
+ /**
+ * An operator * that allows multipilication of a landscape by a real number (order of parameters swapped).
+ **/
+ friend Persistence_landscape operator*( double con , const Persistence_landscape& first )
+ {
+ return first.multiply_lanscape_by_real_number_not_overwrite(con);
+ }
+
+ /**
+ * Operator +=. The second parameter is persistence landscape.
+ **/
+ Persistence_landscape operator += ( const Persistence_landscape& rhs )
+ {
+ *this = *this + rhs;
+ return *this;
+ }
+
+ /**
+ * Operator -=. The second parameter is a persistence landscape.
+ **/
+ Persistence_landscape operator -= ( const Persistence_landscape& rhs )
+ {
+ *this = *this - rhs;
+ return *this;
+ }
+
+
+ /**
+ * Operator *=. The second parameter is a real number by which the y values of all landscape functions are multiplied. The x-values remain unchanged.
+ **/
+ Persistence_landscape operator *= ( double x )
+ {
+ *this = *this*x;
+ return *this;
+ }
+
+ /**
+ * Operator /=. The second parameter is a real number.
+ **/
+ Persistence_landscape operator /= ( double x )
+ {
+ if ( x == 0 )throw( "In operator /=, division by 0. Program terminated." );
+ *this = *this * (1/x);
+ return *this;
+ }
+
+ /**
+ * An operator to compare two persistence landscapes.
+ **/
+ bool operator == ( const Persistence_landscape& rhs )const;
+
+
+ /**
+ * An operator to compare two persistence landscapes.
+ **/
+ bool operator != ( const Persistence_landscape& rhs )const
+ {
+ return !((*this) == rhs);
+ }
+
+
+ /**
+ * Computations of maximum (y) value of landscape.
+ **/
+ double compute_maximum()const
+ {
+ double maxValue = 0;
+ if ( this->land.size() )
+ {
+ maxValue = -std::numeric_limits<int>::max();
+ for ( size_t i = 0 ; i != this->land[0].size() ; ++i )
+ {
+ if ( this->land[0][i].second > maxValue )maxValue = this->land[0][i].second;
+ }
+ }
+ return maxValue;
+ }
+
+
+ /**
+ *\private Computations of minimum (y) value of landscape.
+ **/
+ double compute_minimum()const
+ {
+ double minValue = 0;
+ if ( this->land.size() )
+ {
+ minValue = std::numeric_limits<int>::max();
+ for ( size_t i = 0 ; i != this->land[0].size() ; ++i )
+ {
+ if ( this->land[0][i].second < minValue )minValue = this->land[0][i].second;
+ }
+ }
+ return minValue;
+ }
+
+ /**
+ *\private Computations of a L^i norm of landscape, where i is the input parameter.
+ **/
+ double compute_norm_of_landscape( double i )
+ {
+ Persistence_landscape l;
+ if ( i < std::numeric_limits< double >::max() )
+ {
+ return compute_distance_of_landscapes(*this,l,i);
+ }
+ else
+ {
+ return compute_max_norm_distance_of_landscapes(*this,l);
+ }
+ }
+
+ /**
+ * An operator to compute the value of a landscape in the level 'level' at the argument 'x'.
+ **/
+ double operator()(unsigned level,double x)const{return this->compute_value_at_a_given_point(level,x);}
+
+ /**
+ *\private Computations of L^{\infty} distance between two landscapes.
+ **/
+ friend double compute_max_norm_distance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second );
+ //friend double compute_max_norm_distance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second , unsigned& nrOfLand , double&x , double& y1, double& y2 );
+
+
+ /**
+ *\private Computations of L^{p} distance between two landscapes. p is the parameter of the procedure.
+ **/
+ friend double compute_distance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second , double p );
+
+
+
+ /**
+ * Function to compute absolute value of a PL function. The representation of persistence landscapes allow to store general PL-function. When computing distance betwen two landscapes, we compute difference between
+ * them. In this case, a general PL-function with negative value can appear as a result. Then in order to compute distance, we need to take its absolute value. This is the purpose of this procedure.
+ **/
+ Persistence_landscape abs();
+
+ /**
+ * Computes the number of landscape functions.
+ **/
+ size_t size()const{return this->land.size(); }
+
+ /**
+ * Computate maximal value of lambda-level landscape.
+ **/
+ double find_max( unsigned lambda )const;
+
+ /**
+ *\private Function to compute inner (scalar) product of two landscapes.
+ **/
+ friend double compute_inner_product( const Persistence_landscape& l1 , const Persistence_landscape& l2 );
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ //Implementations of functions for various concepts.
+
+ /**
+ * The number of projections to R is defined to the number of nonzero landscape functions. I-th projection is an integral of i-th landscape function over whole R.
+ * This function is required by the Real_valued_topological_data concept.
+ **/
+ double project_to_R( int number_of_function )const
+ {
+ return this->compute_integral_of_a_level_of_a_landscape( (size_t)number_of_function );
+ }
+
+ /**
+ * The function gives the number of possible projections to R. This function is required by the Real_valued_topological_data concept.
+ **/
+ size_t number_of_projections_to_R()const
+ {
+ return this->number_of_functions_for_projections_to_reals;
+ }
+
+ /**
+ * This function produce a vector of doubles based on a landscape. It is required in a concept Vectorized_topological_data
+ */
+ std::vector<double> vectorize( int number_of_function )const
+ {
+ //TODO, think of something smarter over here
+ std::vector<double> v;
+ if ( (size_t)number_of_function > this->land.size() )
+ {
+ return v;
+ }
+ v.reserve( this->land[number_of_function].size() );
+ for ( size_t i = 0 ; i != this->land[number_of_function].size() ; ++i )
+ {
+ v.push_back( this->land[number_of_function][i].second );
+ }
+ return v;
+ }
+ /**
+ * This function return the number of functions that allows vectorization of persistence laandscape. It is required in a concept Vectorized_topological_data.
+ **/
+ size_t number_of_vectorize_functions()const
+ {
+ return this->number_of_functions_for_vectorization;
+ }
+
+ /**
+ * A function to compute averaged persistence landscape, based on vector of persistence landscapes.
+ * This function is required by Topological_data_with_averages concept.
+ **/
+ void compute_average( const std::vector< Persistence_landscape* >& to_average )
+ {
+ bool dbg = false;
+
+ if ( dbg ){std::cerr << "to_average.size() : " << to_average.size() << std::endl;}
+
+ std::vector< Persistence_landscape* > nextLevelMerge( to_average.size() );
+ for ( size_t i = 0 ; i != to_average.size() ; ++i )
+ {
+ nextLevelMerge[i] = to_average[i];
+ }
+ bool is_this_first_level = true;//in the loop, we will create dynamically a unmber of intermediate complexes. We have to clean that up, but we cannot erase the initial andscapes we have
+ //to average. In this case, we simply check if the nextLevelMerge are the input landscapes or the ones created in that loop by usig this extra variable.
+
+ while ( nextLevelMerge.size() != 1 )
+ {
+ if ( dbg ){std::cerr << "nextLevelMerge.size() : " << nextLevelMerge.size() << std::endl;}
+ std::vector< Persistence_landscape* > nextNextLevelMerge;
+ nextNextLevelMerge.reserve( to_average.size() );
+ for ( size_t i = 0 ; i < nextLevelMerge.size() ; i=i+2 )
+ {
+ if ( dbg ){std::cerr << "i : " << i << std::endl;}
+ Persistence_landscape* l = new Persistence_landscape;
+ if ( i+1 != nextLevelMerge.size() )
+ {
+ (*l) = (*nextLevelMerge[i])+(*nextLevelMerge[i+1]);
+ }
+ else
+ {
+ (*l) = *nextLevelMerge[i];
+ }
+ nextNextLevelMerge.push_back( l );
+ }
+ if ( dbg ){std::cerr << "After this iteration \n";getchar();}
+
+ if ( !is_this_first_level )
+ {
+ //deallocate the memory if the vector nextLevelMerge do not consist of the initial landscapes
+ for ( size_t i = 0 ; i != nextLevelMerge.size() ; ++i )
+ {
+ delete nextLevelMerge[i];
+ }
+ }
+ is_this_first_level = false;
+ nextLevelMerge.swap(nextNextLevelMerge);
+ }
+ (*this) = (*nextLevelMerge[0]);
+ (*this) *= 1/( (double)to_average.size() );
+ }
+
+
+ /**
+ * A function to compute distance between persistence landscape.
+ * The parameter of this functionis a Persistence_landscape.
+ * This function is required in Topological_data_with_distances concept.
+ * For max norm distance, set power to std::numeric_limits<double>::max()
+ **/
+ double distance( const Persistence_landscape& second , double power = 1 )const
+ {
+ if ( power < std::numeric_limits<double>::max() )
+ {
+ return compute_distance_of_landscapes( *this , second , power );
+ }
+ else
+ {
+ return compute_max_norm_distance_of_landscapes( *this , second );
+ }
+ }
+
+
+ /**
+ * A function to compute scalar product of persistence landscapes.
+ * The parameter of this functionis a Persistence_landscape.
+ * This function is required in Topological_data_with_scalar_product concept.
+ **/
+ double compute_scalar_product( const Persistence_landscape& second )const
+ {
+ return compute_inner_product( (*this) , second );
+ }
+ //end of implementation of functions needed for concepts.
+
+
+ /**
+ * This procedure returns x-range of a given level persistence landscape. If a default value is used, the x-range
+ * of 0th level landscape is given (and this range contains the ranges of all other landscapes).
+ **/
+ std::pair< double , double > get_x_range( size_t level = 0 )const
+ {
+ std::pair< double , double > result;
+ if ( level < this->land.size() )
+ {
+ result = std::make_pair( this->land[level][1].first , this->land[level][ this->land[level].size() - 2 ].first );
+ }
+ else
+ {
+ result = std::make_pair( 0,0 );
+ }
+ return result;
+ }
+
+ /**
+ * This procedure returns y-range of a given level persistence landscape. If a default value is used, the y-range
+ * of 0th level landscape is given (and this range contains the ranges of all other landscapes).
+ **/
+ std::pair< double , double > get_y_range( size_t level = 0 )const
+ {
+ std::pair< double , double > result;
+ if ( level < this->land.size() )
+ {
+ double maxx = this->compute_maximum();
+ double minn = this->compute_minimum();
+ result = std::make_pair( minn , maxx );
+ }
+ else
+ {
+ result = std::make_pair( 0,0 );
+ }
+ return result;
+ }
+
+
+
+ //a function used to create a gnuplot script for visualization of landscapes
+ void plot( const char* filename, double xRangeBegin = std::numeric_limits<double>::max() , double xRangeEnd = std::numeric_limits<double>::max() ,
+ double yRangeBegin = std::numeric_limits<double>::max() , double yRangeEnd = std::numeric_limits<double>::max(),
+ int from = std::numeric_limits<int>::max(), int to = std::numeric_limits<int>::max() );
+
+
+protected:
+ std::vector< std::vector< std::pair<double,double> > > land;
+ size_t number_of_functions_for_vectorization;
+ size_t number_of_functions_for_projections_to_reals;
+
+ void construct_persistence_landscape_from_barcode( const std::vector< std::pair< double , double > > & p );
+ Persistence_landscape multiply_lanscape_by_real_number_not_overwrite( double x )const;
+ void multiply_lanscape_by_real_number_overwrite( double x );
+ template < typename oper > friend Persistence_landscape operation_on_pair_of_landscapes ( const Persistence_landscape& land1 , const Persistence_landscape& land2 );
+ friend double compute_maximal_distance_non_symmetric( const Persistence_landscape& pl1, const Persistence_landscape& pl2 );
+
+ void set_up_numbers_of_functions_for_vectorization_and_projections_to_reals()
+ {
+ //warning, this function can be only called after filling in the intervals vector.
+ this->number_of_functions_for_vectorization = this->land.size();
+ this->number_of_functions_for_projections_to_reals = this->land.size();
+ }
+};
+
+
+
+
+
+
+
+
+Persistence_landscape::Persistence_landscape(const char* filename , size_t dimension)
+{
+ bool dbg = false;
+
+ if ( dbg )
+ {
+ std::cerr << "Using constructor : Persistence_landscape(char* filename)" << std::endl;
+ }
+ //standard file with barcode
+ //std::vector< std::pair< double , double > > barcode = read_standard_file( filename );
+ //gudhi file with barcode
+ std::vector< std::pair< double , double > > barcode = read_gudhi_file( filename , dimension );
+ this->construct_persistence_landscape_from_barcode( barcode );
+ this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
+}
+
+
+bool operatorEqualDbg = false;
+bool Persistence_landscape::operator == ( const Persistence_landscape& rhs )const
+{
+ if ( this->land.size() != rhs.land.size() )
+ {
+ if (operatorEqualDbg)std::cerr << "1\n";
+ return false;
+ }
+ for ( size_t level = 0 ; level != this->land.size() ; ++level )
+ {
+ if ( this->land[level].size() != rhs.land[level].size() )
+ {
+ if (operatorEqualDbg)std::cerr << "this->land[level].size() : " << this->land[level].size() << "\n";
+ if (operatorEqualDbg)std::cerr << "rhs.land[level].size() : " << rhs.land[level].size() << "\n";
+ if (operatorEqualDbg)std::cerr << "2\n";
+ return false;
+ }
+ for ( size_t i = 0 ; i != this->land[level].size() ; ++i )
+ {
+ if ( !( almost_equal(this->land[level][i].first , rhs.land[level][i].first) && almost_equal(this->land[level][i].second , rhs.land[level][i].second) ) )
+ {
+ //std::cerr<< this->land[level][i].first << " , " << rhs.land[level][i].first << " and " << this->land[level][i].second << " , " << rhs.land[level][i].second << std::endl;
+ if (operatorEqualDbg)std::cerr << "this->land[level][i] : " << this->land[level][i].first << " " << this->land[level][i].second << "\n";
+ if (operatorEqualDbg)std::cerr << "rhs.land[level][i] : " << rhs.land[level][i].first << " " << rhs.land[level][i].second << "\n";
+ if (operatorEqualDbg)std::cerr << "3\n";
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+
+
+
+Persistence_landscape::Persistence_landscape( const std::vector< std::pair< double , double > > & p )
+{
+ this->construct_persistence_landscape_from_barcode( p );
+ this->set_up_numbers_of_functions_for_vectorization_and_projections_to_reals();
+}
+
+
+void Persistence_landscape::construct_persistence_landscape_from_barcode( const std::vector< std::pair< double , double > > & p )
+{
+ bool dbg = false;
+ if ( dbg ){std::cerr << "Persistence_landscape::Persistence_landscape( const std::vector< std::pair< double , double > >& p )" << std::endl;}
+
+ //this is a general algorithm to construct persistence landscapes.
+ std::vector< std::pair<double,double> > bars;
+ bars.insert( bars.begin() , p.begin() , p.end() );
+ std::sort( bars.begin() , bars.end() , compare_points_sorting );
+
+ if (dbg)
+ {
+ std::cerr << "Bars : \n";
+ for ( size_t i = 0 ; i != bars.size() ; ++i )
+ {
+ std::cerr << bars[i].first << " " << bars[i].second << "\n";
+ }
+ getchar();
+ }
+
+ std::vector< std::pair<double,double> > characteristicPoints(p.size());
+ for ( size_t i = 0 ; i != bars.size() ; ++i )
+ {
+ characteristicPoints[i] = std::make_pair((bars[i].first+bars[i].second)/2.0 , (bars[i].second - bars[i].first)/2.0);
+ }
+ std::vector< std::vector< std::pair<double,double> > > Persistence_landscape;
+ while ( !characteristicPoints.empty() )
+ {
+ if(dbg)
+ {
+ for ( size_t i = 0 ; i != characteristicPoints.size() ; ++i )
+ {
+ std::cout << "(" << characteristicPoints[i].first << " " << characteristicPoints[i].second << ")\n";
+ }
+ std::cin.ignore();
+ }
+
+ std::vector< std::pair<double,double> > lambda_n;
+ lambda_n.push_back( std::make_pair( -std::numeric_limits<int>::max() , 0 ) );
+ lambda_n.push_back( std::make_pair(minus_length(characteristicPoints[0]),0) );
+ lambda_n.push_back( characteristicPoints[0] );
+
+ if (dbg)
+ {
+ std::cerr << "1 Adding to lambda_n : (" << -std::numeric_limits<int>::max() << " " << 0 << ") , (" << minus_length(characteristicPoints[0]) << " " << 0 << ") , (" << characteristicPoints[0].first << " " << characteristicPoints[0].second << ") \n";
+ }
+
+ size_t i = 1;
+ std::vector< std::pair<double,double> > newCharacteristicPoints;
+ while ( i < characteristicPoints.size() )
+ {
+ size_t p = 1;
+ if ( (minus_length(characteristicPoints[i]) >= minus_length(lambda_n[lambda_n.size()-1])) && (birth_plus_deaths(characteristicPoints[i]) > birth_plus_deaths(lambda_n[lambda_n.size()-1])) )
+ {
+ if ( minus_length(characteristicPoints[i]) < birth_plus_deaths(lambda_n[lambda_n.size()-1]) )
+ {
+ std::pair<double,double> point = std::make_pair( (minus_length(characteristicPoints[i])+birth_plus_deaths(lambda_n[lambda_n.size()-1]))/2 , (birth_plus_deaths(lambda_n[lambda_n.size()-1])-minus_length(characteristicPoints[i]))/2 );
+ lambda_n.push_back( point );
+ if (dbg)
+ {
+ std::cerr << "2 Adding to lambda_n : (" << point.first << " " << point.second << ")\n";
+ }
+
+
+ if ( dbg )
+ {
+ std::cerr << "characteristicPoints[i+p] : " << characteristicPoints[i+p].first << " " << characteristicPoints[i+p].second << "\n";
+ std::cerr << "point : " << point.first << " " << point.second << "\n";
+ getchar();
+ }
+
+ while ( (i+p < characteristicPoints.size() ) && ( almost_equal(minus_length(point),minus_length(characteristicPoints[i+p])) ) && ( birth_plus_deaths(point) <= birth_plus_deaths(characteristicPoints[i+p]) ) )
+ {
+ newCharacteristicPoints.push_back( characteristicPoints[i+p] );
+ if (dbg)
+ {
+ std::cerr << "3.5 Adding to newCharacteristicPoints : (" << characteristicPoints[i+p].first << " " << characteristicPoints[i+p].second << ")\n";
+ getchar();
+ }
+ ++p;
+ }
+
+
+ newCharacteristicPoints.push_back( point );
+ if (dbg)
+ {
+ std::cerr << "4 Adding to newCharacteristicPoints : (" << point.first << " " << point.second << ")\n";
+ }
+
+
+ while ( (i+p < characteristicPoints.size() ) && ( minus_length(point) <= minus_length(characteristicPoints[i+p]) ) && (birth_plus_deaths(point)>=birth_plus_deaths(characteristicPoints[i+p])) )
+ {
+ newCharacteristicPoints.push_back( characteristicPoints[i+p] );
+ if (dbg)
+ {
+ std::cerr << "characteristicPoints[i+p] : " << characteristicPoints[i+p].first << " " << characteristicPoints[i+p].second << "\n";
+ std::cerr << "point : " << point.first << " " << point.second << "\n";
+ std::cerr << "characteristicPoints[i+p] birth and death : " << minus_length(characteristicPoints[i+p]) << " , " << birth_plus_deaths(characteristicPoints[i+p]) << "\n";
+ std::cerr << "point birth and death : " << minus_length(point) << " , " << birth_plus_deaths(point) << "\n";
+
+ std::cerr << "3 Adding to newCharacteristicPoints : (" << characteristicPoints[i+p].first << " " << characteristicPoints[i+p].second << ")\n";
+ getchar();
+ }
+ ++p;
+ }
+
+ }
+ else
+ {
+ lambda_n.push_back( std::make_pair( birth_plus_deaths(lambda_n[lambda_n.size()-1]) , 0 ) );
+ lambda_n.push_back( std::make_pair( minus_length(characteristicPoints[i]) , 0 ) );
+ if (dbg)
+ {
+ std::cerr << "5 Adding to lambda_n : (" << birth_plus_deaths(lambda_n[lambda_n.size()-1]) << " " << 0 << ")\n";
+ std::cerr << "5 Adding to lambda_n : (" << minus_length(characteristicPoints[i]) << " " << 0 << ")\n";
+ }
+ }
+ lambda_n.push_back( characteristicPoints[i] );
+ if (dbg)
+ {
+ std::cerr << "6 Adding to lambda_n : (" << characteristicPoints[i].first << " " << characteristicPoints[i].second << ")\n";
+ }
+ }
+ else
+ {
+ newCharacteristicPoints.push_back( characteristicPoints[i] );
+ if (dbg)
+ {
+ std::cerr << "7 Adding to newCharacteristicPoints : (" << characteristicPoints[i].first << " " << characteristicPoints[i].second << ")\n";
+ }
+ }
+ i = i+p;
+ }
+ lambda_n.push_back( std::make_pair(birth_plus_deaths(lambda_n[lambda_n.size()-1]),0) );
+ lambda_n.push_back( std::make_pair( std::numeric_limits<int>::max() , 0 ) );
+
+ characteristicPoints = newCharacteristicPoints;
+
+ lambda_n.erase(std::unique(lambda_n.begin(), lambda_n.end()), lambda_n.end());
+ this->land.push_back( lambda_n );
+ }
+}
+
+
+
+//this function find maximum of lambda_n
+double Persistence_landscape::find_max( unsigned lambda )const
+{
+ if ( this->land.size() < lambda )return 0;
+ double maximum = -std::numeric_limits<int>::max();
+ for ( size_t i = 0 ; i != this->land[lambda].size() ; ++i )
+ {
+ if ( this->land[lambda][i].second > maximum )maximum = this->land[lambda][i].second;
+ }
+ return maximum;
+}
+
+
+double Persistence_landscape::compute_integral_of_landscape()const
+{
+ double result = 0;
+ for ( size_t i = 0 ; i != this->land.size() ; ++i )
+ {
+ for ( size_t nr = 2 ; nr != this->land[i].size()-1 ; ++nr )
+ {
+ //it suffices to compute every planar integral and then sum them ap for each lambda_n
+ result += 0.5*( this->land[i][nr].first - this->land[i][nr-1].first )*(this->land[i][nr].second + this->land[i][nr-1].second);
+ }
+ }
+ return result;
+}
+
+double Persistence_landscape::compute_integral_of_a_level_of_a_landscape( size_t level )const
+{
+ double result = 0;
+ if ( level >= this->land.size() )
+ {
+ //this landscape function is constantly equal 0, so is the intergral.
+ return result;
+ }
+ //also negative landscapes are assumed to be zero.
+ if ( level < 0 )return 0;
+
+ for ( size_t nr = 2 ; nr != this->land[ level ].size()-1 ; ++nr )
+ {
+ //it suffices to compute every planar integral and then sum them ap for each lambda_n
+ result += 0.5*( this->land[ level ][nr].first - this->land[ level ][nr-1].first )*(this->land[ level ][nr].second + this->land[ level ][nr-1].second);
+ }
+
+ return result;
+}
+
+
+double Persistence_landscape::compute_integral_of_landscape( double p )const
+{
+ bool dbg = false;
+ double result = 0;
+ for ( size_t i = 0 ; i != this->land.size() ; ++i )
+ {
+ for ( size_t nr = 2 ; nr != this->land[i].size()-1 ; ++nr )
+ {
+ if (dbg)std::cout << "nr : " << nr << "\n";
+ //In this interval, the landscape has a form f(x) = ax+b. We want to compute integral of (ax+b)^p = 1/a * (ax+b)^{p+1}/(p+1)
+ std::pair<double,double> coef = compute_parameters_of_a_line( this->land[i][nr] , this->land[i][nr-1] );
+ double a = coef.first;
+ double b = coef.second;
+
+ if (dbg)std::cout << "(" << this->land[i][nr].first << "," << this->land[i][nr].second << ") , " << this->land[i][nr-1].first << "," << this->land[i][nr].second << ")" << std::endl;
+ if ( this->land[i][nr].first == this->land[i][nr-1].first )continue;
+ if ( a != 0 )
+ {
+ result += 1/(a*(p+1)) * ( pow((a*this->land[i][nr].first+b),p+1) - pow((a*this->land[i][nr-1].first+b),p+1));
+ }
+ else
+ {
+ result += ( this->land[i][nr].first - this->land[i][nr-1].first )*( pow(this->land[i][nr].second,p) );
+ }
+ if ( dbg )
+ {
+ std::cout << "a : " <<a << " , b : " << b << std::endl;
+ std::cout << "result : " << result << std::endl;
+ }
+ }
+ //if (compute_integral_of_landscapeDbg) std::cin.ignore();
+ }
+ return result;
+}
+
+
+//this is O(log(n)) algorithm, where n is number of points in this->land.
+double Persistence_landscape::compute_value_at_a_given_point( unsigned level , double x )const
+{
+ bool compute_value_at_a_given_pointDbg = false;
+ //in such a case lambda_level = 0.
+ if ( level > this->land.size() ) return 0;
+
+ //we know that the points in this->land[level] are ordered according to x coordinate. Therefore, we can find the point by using bisection:
+ unsigned coordBegin = 1;
+ unsigned coordEnd = this->land[level].size()-2;
+
+ if ( compute_value_at_a_given_pointDbg )
+ {
+ std::cerr << "Here \n";
+ std::cerr << "x : " << x << "\n";
+ std::cerr << "this->land[level][coordBegin].first : " << this->land[level][coordBegin].first << "\n";
+ std::cerr << "this->land[level][coordEnd].first : " << this->land[level][coordEnd].first << "\n";
+ }
+
+ //in this case x is outside the support of the landscape, therefore the value of the landscape is 0.
+ if ( x <= this->land[level][coordBegin].first )return 0;
+ if ( x >= this->land[level][coordEnd].first )return 0;
+
+ if (compute_value_at_a_given_pointDbg)std::cerr << "Entering to the while loop \n";
+
+ while ( coordBegin+1 != coordEnd )
+ {
+ if (compute_value_at_a_given_pointDbg)
+ {
+ std::cerr << "coordBegin : " << coordBegin << "\n";
+ std::cerr << "coordEnd : " << coordEnd << "\n";
+ std::cerr << "this->land[level][coordBegin].first : " << this->land[level][coordBegin].first << "\n";
+ std::cerr << "this->land[level][coordEnd].first : " << this->land[level][coordEnd].first << "\n";
+ }
+
+
+ unsigned newCord = (unsigned)floor((coordEnd+coordBegin)/2.0);
+
+ if (compute_value_at_a_given_pointDbg)
+ {
+ std::cerr << "newCord : " << newCord << "\n";
+ std::cerr << "this->land[level][newCord].first : " << this->land[level][newCord].first << "\n";
+ std::cin.ignore();
+ }
+
+ if ( this->land[level][newCord].first <= x )
+ {
+ coordBegin = newCord;
+ if ( this->land[level][newCord].first == x )return this->land[level][newCord].second;
+ }
+ else
+ {
+ coordEnd = newCord;
+ }
+ }
+
+ if (compute_value_at_a_given_pointDbg)
+ {
+ std::cout << "x : " << x << " is between : " << this->land[level][coordBegin].first << " a " << this->land[level][coordEnd].first << "\n";
+ std::cout << "the y coords are : " << this->land[level][coordBegin].second << " a " << this->land[level][coordEnd].second << "\n";
+ std::cerr << "coordBegin : " << coordBegin << "\n";
+ std::cerr << "coordEnd : " << coordEnd << "\n";
+ std::cin.ignore();
+ }
+ return function_value( this->land[level][coordBegin] , this->land[level][coordEnd] , x );
+}
+
+std::ostream& operator<<(std::ostream& out, Persistence_landscape& land )
+{
+ for ( size_t level = 0 ; level != land.land.size() ; ++level )
+ {
+ out << "Lambda_" << level << ":" << std::endl;
+ for ( size_t i = 0 ; i != land.land[level].size() ; ++i )
+ {
+ if ( land.land[level][i].first == -std::numeric_limits<int>::max() )
+ {
+ out << "-inf";
+ }
+ else
+ {
+ if ( land.land[level][i].first == std::numeric_limits<int>::max() )
+ {
+ out << "+inf";
+ }
+ else
+ {
+ out << land.land[level][i].first;
+ }
+ }
+ out << " , " << land.land[level][i].second << std::endl;
+ }
+ }
+ return out;
+}
+
+
+
+
+void Persistence_landscape::multiply_lanscape_by_real_number_overwrite( double x )
+{
+ for ( size_t dim = 0 ; dim != this->land.size() ; ++dim )
+ {
+ for ( size_t i = 0 ; i != this->land[dim].size() ; ++i )
+ {
+ this->land[dim][i].second *= x;
+ }
+ }
+}
+
+bool AbsDbg = false;
+Persistence_landscape Persistence_landscape::abs()
+{
+ Persistence_landscape result;
+ for ( size_t level = 0 ; level != this->land.size() ; ++level )
+ {
+ if ( AbsDbg ){ std::cout << "level: " << level << std::endl; }
+ std::vector< std::pair<double,double> > lambda_n;
+ lambda_n.push_back( std::make_pair( -std::numeric_limits<int>::max() , 0 ) );
+ for ( size_t i = 1 ; i != this->land[level].size() ; ++i )
+ {
+ if ( AbsDbg ){std::cout << "this->land[" << level << "][" << i << "] : " << this->land[level][i].first << " " << this->land[level][i].second << std::endl;}
+ //if a line segment between this->land[level][i-1] and this->land[level][i] crosses the x-axis, then we have to add one landscape point t oresult
+ if ( (this->land[level][i-1].second)*(this->land[level][i].second) < 0 )
+ {
+ double zero = find_zero_of_a_line_segment_between_those_two_points( this->land[level][i-1] , this->land[level][i] );
+
+ lambda_n.push_back( std::make_pair(zero , 0) );
+ lambda_n.push_back( std::make_pair(this->land[level][i].first , fabs(this->land[level][i].second)) );
+ if ( AbsDbg )
+ {
+ std::cout << "Adding pair : (" << zero << ",0)" << std::endl;
+ std::cout << "In the same step adding pair : (" << this->land[level][i].first << "," << fabs(this->land[level][i].second) << ") " << std::endl;
+ std::cin.ignore();
+ }
+ }
+ else
+ {
+ lambda_n.push_back( std::make_pair(this->land[level][i].first , fabs(this->land[level][i].second)) );
+ if ( AbsDbg )
+ {
+ std::cout << "Adding pair : (" << this->land[level][i].first << "," << fabs(this->land[level][i].second) << ") " << std::endl;
+ std::cin.ignore();
+ }
+ }
+ }
+ result.land.push_back( lambda_n );
+ }
+ return result;
+}
+
+
+Persistence_landscape Persistence_landscape::multiply_lanscape_by_real_number_not_overwrite( double x )const
+{
+ std::vector< std::vector< std::pair<double,double> > > result(this->land.size());
+ for ( size_t dim = 0 ; dim != this->land.size() ; ++dim )
+ {
+ std::vector< std::pair<double,double> > lambda_dim( this->land[dim].size() );
+ for ( size_t i = 0 ; i != this->land[dim].size() ; ++i )
+ {
+ lambda_dim[i] = std::make_pair( this->land[dim][i].first , x*this->land[dim][i].second );
+ }
+ result[dim] = lambda_dim;
+ }
+ Persistence_landscape res;
+ //CHANGE
+ //res.land = result;
+ res.land.swap(result);
+ return res;
+}//multiply_lanscape_by_real_number_overwrite
+
+
+void Persistence_landscape::print_to_file( const char* filename )const
+{
+ std::ofstream write;
+ write.open(filename);
+ for ( size_t dim = 0 ; dim != this->land.size() ; ++dim )
+ {
+ write << "#lambda_" << dim << std::endl;
+ for ( size_t i = 1 ; i != this->land[dim].size()-1 ; ++i )
+ {
+ write << this->land[dim][i].first << " " << this->land[dim][i].second << std::endl;
+ }
+ }
+ write.close();
+}
+
+void Persistence_landscape::load_landscape_from_file( const char* filename )
+{
+ bool dbg = false;
+ //removing the current content of the persistence landscape.
+ this->land.clear();
+
+
+ //this constructor reads persistence landscape form a file. This file have to be created by this software beforehead
+ std::ifstream in;
+ in.open( filename );
+ if ( !( access( filename, F_OK ) != -1 ) )
+ {
+ std::cerr << "The file : " << filename << " do not exist. The program will now terminate \n";
+ throw "The file from which you are trying to read the persistence landscape do not exist. The program will now terminate \n";
+ }
+
+ std::string line;
+ std::vector< std::pair<double,double> > landscapeAtThisLevel;
+
+ bool isThisAFirsLine = true;
+ while ( !in.eof() )
+ {
+ getline(in,line);
+ if ( !(line.length() == 0 || line[0] == '#') )
+ {
+ std::stringstream lineSS;
+ lineSS << line;
+ double beginn, endd;
+ lineSS >> beginn;
+ lineSS >> endd;
+ landscapeAtThisLevel.push_back( std::make_pair( beginn , endd ) );
+ if (dbg){std::cerr << "Reading a pont : " << beginn << " , " << endd << std::endl;}
+ }
+ else
+ {
+ if (dbg)
+ {
+ std::cout << "IGNORE LINE\n";
+ getchar();
+ }
+ if ( !isThisAFirsLine )
+ {
+ landscapeAtThisLevel.push_back( std::make_pair( std::numeric_limits<int>::max() , 0 ) );
+ this->land.push_back(landscapeAtThisLevel);
+ std::vector< std::pair<double,double> > newLevelOdLandscape;
+ landscapeAtThisLevel.swap(newLevelOdLandscape);
+ }
+ landscapeAtThisLevel.push_back( std::make_pair( -std::numeric_limits<int>::max() , 0 ) );
+ isThisAFirsLine = false;
+ }
+ }
+ if ( landscapeAtThisLevel.size() > 1 )
+ {
+ //seems that the last line of the file is not finished with the newline sign. We need to put what we have in landscapeAtThisLevel to the constructed landscape.
+ landscapeAtThisLevel.push_back( std::make_pair( std::numeric_limits<int>::max() , 0 ) );
+ this->land.push_back(landscapeAtThisLevel);
+ }
+
+ in.close();
+}
+
+
+template < typename T >
+Persistence_landscape operation_on_pair_of_landscapes ( const Persistence_landscape& land1 , const Persistence_landscape& land2 )
+{
+ bool operation_on_pair_of_landscapesDBG = false;
+ if ( operation_on_pair_of_landscapesDBG ){std::cout << "operation_on_pair_of_landscapes\n";std::cin.ignore();}
+ Persistence_landscape result;
+ std::vector< std::vector< std::pair<double,double> > > land( std::max( land1.land.size() , land2.land.size() ) );
+ result.land = land;
+ T oper;
+
+ if ( operation_on_pair_of_landscapesDBG )
+ {
+ for ( size_t i = 0 ; i != std::min( land1.land.size() , land2.land.size() ) ; ++i )
+ {
+ std::cerr << "land1.land[" << i << "].size() : " << land1.land[i].size() << std::endl;
+ std::cerr << "land2.land[" << i << "].size() : " << land2.land[i].size() << std::endl;
+ }
+ getchar();
+ }
+
+ for ( size_t i = 0 ; i != std::min( land1.land.size() , land2.land.size() ) ; ++i )
+ {
+ std::vector< std::pair<double,double> > lambda_n;
+ size_t p = 0;
+ size_t q = 0;
+ while ( (p+1 < land1.land[i].size()) && (q+1 < land2.land[i].size()) )
+ {
+ if ( operation_on_pair_of_landscapesDBG )
+ {
+ std::cerr << "p : " << p << "\n";
+ std::cerr << "q : " << q << "\n";
+ std::cerr << "land1.land.size() : " << land1.land.size() << std::endl;
+ std::cerr << "land2.land.size() : " << land2.land.size() << std::endl;
+ std::cerr << "land1.land[" << i << "].size() : " << land1.land[i].size() << std::endl;
+ std::cerr << "land2.land[" << i << "].size() : " << land2.land[i].size() << std::endl;
+ std::cout << "land1.land[i][p].first : " << land1.land[i][p].first << "\n";
+ std::cout << "land2.land[i][q].first : " << land2.land[i][q].first << "\n";
+ //getchar();
+ }
+
+ if ( land1.land[i][p].first < land2.land[i][q].first )
+ {
+ if ( operation_on_pair_of_landscapesDBG )
+ {
+ std::cout << "first \n";
+ std::cout << " function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) : "<< function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) << "\n";
+ //std::cout << "oper( " << land1.land[i][p].second <<"," << function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) << " : " << oper( land1.land[i][p].second , function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) ) << "\n";
+ }
+ lambda_n.push_back(
+ std::make_pair(
+ land1.land[i][p].first ,
+ oper( (double)land1.land[i][p].second , function_value(land2.land[i][q-1],land2.land[i][q],land1.land[i][p].first) )
+ )
+ );
+ ++p;
+ continue;
+ }
+ if ( land1.land[i][p].first > land2.land[i][q].first )
+ {
+ if ( operation_on_pair_of_landscapesDBG )
+ {
+ std::cout << "Second \n";
+ std::cout << "function_value("<< land1.land[i][p-1].first << " " << land1.land[i][p-1].second <<" ,"<< land1.land[i][p].first << " " << land1.land[i][p].second <<", " << land2.land[i][q].first<<" ) : " << function_value( land1.land[i][p-1] , land1.land[i][p-1] ,land2.land[i][q].first ) << "\n";
+ std::cout << "oper( " << function_value( land1.land[i][p] , land1.land[i][p-1] ,land2.land[i][q].first ) <<"," << land2.land[i][q].second <<" : " << oper( land2.land[i][q].second , function_value( land1.land[i][p] , land1.land[i][p-1] ,land2.land[i][q].first ) ) << "\n";
+ }
+ lambda_n.push_back( std::make_pair( land2.land[i][q].first , oper( function_value( land1.land[i][p] , land1.land[i][p-1] ,land2.land[i][q].first ) , land2.land[i][q].second ) ) );
+ ++q;
+ continue;
+ }
+ if ( land1.land[i][p].first == land2.land[i][q].first )
+ {
+ if (operation_on_pair_of_landscapesDBG)std::cout << "Third \n";
+ lambda_n.push_back( std::make_pair( land2.land[i][q].first , oper( land1.land[i][p].second , land2.land[i][q].second ) ) );
+ ++p;++q;
+ }
+ if (operation_on_pair_of_landscapesDBG){std::cout << "Next iteration \n";}
+ }
+ while ( (p+1 < land1.land[i].size())&&(q+1 >= land2.land[i].size()) )
+ {
+ if (operation_on_pair_of_landscapesDBG)
+ {
+ std::cout << "New point : " << land1.land[i][p].first << " oper(land1.land[i][p].second,0) : " << oper(land1.land[i][p].second,0) << std::endl;
+ }
+ lambda_n.push_back( std::make_pair(land1.land[i][p].first , oper(land1.land[i][p].second,0) ) );
+ ++p;
+ }
+ while ( (p+1 >= land1.land[i].size())&&(q+1 < land2.land[i].size()) )
+ {
+ if (operation_on_pair_of_landscapesDBG)
+ {
+ std::cout << "New point : " << land2.land[i][q].first << " oper(0,land2.land[i][q].second) : " << oper(0,land2.land[i][q].second) << std::endl;
+ }
+ lambda_n.push_back( std::make_pair(land2.land[i][q].first , oper(0,land2.land[i][q].second) ) );
+ ++q;
+ }
+ lambda_n.push_back( std::make_pair( std::numeric_limits<int>::max() , 0 ) );
+ //CHANGE
+ //result.land[i] = lambda_n;
+ result.land[i].swap(lambda_n);
+ }
+ if ( land1.land.size() > std::min( land1.land.size() , land2.land.size() ) )
+ {
+ if (operation_on_pair_of_landscapesDBG){std::cout << "land1.land.size() > std::min( land1.land.size() , land2.land.size() )" << std::endl;}
+ for ( size_t i = std::min( land1.land.size() , land2.land.size() ) ; i != std::max( land1.land.size() , land2.land.size() ) ; ++i )
+ {
+ std::vector< std::pair<double,double> > lambda_n( land1.land[i] );
+ for ( size_t nr = 0 ; nr != land1.land[i].size() ; ++nr )
+ {
+ lambda_n[nr] = std::make_pair( land1.land[i][nr].first , oper( land1.land[i][nr].second , 0 ) );
+ }
+ //CHANGE
+ //result.land[i] = lambda_n;
+ result.land[i].swap(lambda_n);
+ }
+ }
+ if ( land2.land.size() > std::min( land1.land.size() , land2.land.size() ) )
+ {
+ if (operation_on_pair_of_landscapesDBG){std::cout << "( land2.land.size() > std::min( land1.land.size() , land2.land.size() ) ) " << std::endl;}
+ for ( size_t i = std::min( land1.land.size() , land2.land.size() ) ; i != std::max( land1.land.size() , land2.land.size() ) ; ++i )
+ {
+ std::vector< std::pair<double,double> > lambda_n( land2.land[i] );
+ for ( size_t nr = 0 ; nr != land2.land[i].size() ; ++nr )
+ {
+ lambda_n[nr] = std::make_pair( land2.land[i][nr].first , oper( 0 , land2.land[i][nr].second ) );
+ }
+ //CHANGE
+ //result.land[i] = lambda_n;
+ result.land[i].swap(lambda_n);
+ }
+ }
+ if ( operation_on_pair_of_landscapesDBG ){std::cout << "operation_on_pair_of_landscapes END\n";std::cin.ignore();}
+ return result;
+}//operation_on_pair_of_landscapes
+
+
+
+double compute_maximal_distance_non_symmetric( const Persistence_landscape& pl1, const Persistence_landscape& pl2 )
+{
+ bool dbg = false;
+ if (dbg)std::cerr << " compute_maximal_distance_non_symmetric \n";
+ //this distance is not symmetric. It compute ONLY distance between inflection points of pl1 and pl2.
+ double maxDist = 0;
+ size_t minimalNumberOfLevels = std::min( pl1.land.size() , pl2.land.size() );
+ for ( size_t level = 0 ; level != minimalNumberOfLevels ; ++ level )
+ {
+ if (dbg)
+ {
+ std::cerr << "Level : " << level << std::endl;
+ std::cerr << "PL1 : \n";
+ for ( size_t i = 0 ; i != pl1.land[level].size() ; ++i )
+ {
+ std::cerr << "(" <<pl1.land[level][i].first << "," << pl1.land[level][i].second << ") \n";
+ }
+ std::cerr << "PL2 : \n";
+ for ( size_t i = 0 ; i != pl2.land[level].size() ; ++i )
+ {
+ std::cerr << "(" <<pl2.land[level][i].first << "," << pl2.land[level][i].second << ") \n";
+ }
+ std::cin.ignore();
+ }
+
+ int p2Count = 0;
+ for ( size_t i = 1 ; i != pl1.land[level].size()-1 ; ++i ) //w tym przypadku nie rozwarzam punktow w nieskocznosci
+ {
+ while ( true )
+ {
+ if ( (pl1.land[level][i].first>=pl2.land[level][p2Count].first) && (pl1.land[level][i].first<=pl2.land[level][p2Count+1].first) )break;
+ p2Count++;
+ }
+ double val = fabs( function_value( pl2.land[level][p2Count] , pl2.land[level][p2Count+1] , pl1.land[level][i].first ) - pl1.land[level][i].second);
+ if ( maxDist <= val )maxDist = val;
+
+ if (dbg)
+ {
+ std::cerr << pl1.land[level][i].first <<"in [" << pl2.land[level][p2Count].first << "," << pl2.land[level][p2Count+1].first <<"] \n";
+ std::cerr << "pl1[level][i].second : " << pl1.land[level][i].second << std::endl;
+ std::cerr << "function_value( pl2[level][p2Count] , pl2[level][p2Count+1] , pl1[level][i].first ) : " << function_value( pl2.land[level][p2Count] , pl2.land[level][p2Count+1] , pl1.land[level][i].first ) << std::endl;
+ std::cerr << "val : " << val << std::endl;
+ std::cin.ignore();
+ }
+ }
+ }
+
+ if (dbg)std::cerr << "minimalNumberOfLevels : " << minimalNumberOfLevels << std::endl;
+
+ if ( minimalNumberOfLevels < pl1.land.size() )
+ {
+ for ( size_t level = minimalNumberOfLevels ; level != pl1.land.size() ; ++ level )
+ {
+ for ( size_t i = 0 ; i != pl1.land[level].size() ; ++i )
+ {
+ if (dbg)std::cerr << "pl1[level][i].second : " << pl1.land[level][i].second << std::endl;
+ if ( maxDist < pl1.land[level][i].second )maxDist = pl1.land[level][i].second;
+ }
+ }
+ }
+ return maxDist;
+}
+
+
+
+
+double compute_distance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second , double p )
+{
+ bool dbg = false;
+ //This is what we want to compute: (\int_{- \infty}^{+\infty}| first-second |^p)^(1/p). We will do it one step at a time:
+
+ //first-second :
+ Persistence_landscape lan = first-second;
+
+ //| first-second |:
+ lan = lan.abs();
+
+ if ( dbg ){std::cerr << "Abs of difference ; " << lan << std::endl;getchar();}
+
+ if ( p < std::numeric_limits<double>::max() )
+ {
+ //\int_{- \infty}^{+\infty}| first-second |^p
+ double result;
+ if ( p != 1 )
+ {
+ if ( dbg )std::cerr << "Power != 1, compute integral to the power p\n";
+ result = lan.compute_integral_of_landscape( (double)p );
+ }
+ else
+ {
+ if ( dbg )std::cerr << "Power = 1, compute integral \n";
+ result = lan.compute_integral_of_landscape();
+ }
+ //(\int_{- \infty}^{+\infty}| first-second |^p)^(1/p)
+ return pow( result , 1/(double)p );
+ }
+ else
+ {
+ //p == infty
+ if ( dbg )std::cerr << "Power = infty, compute maximum \n";
+ return lan.compute_maximum();
+ }
+}
+
+double compute_max_norm_distance_of_landscapes( const Persistence_landscape& first, const Persistence_landscape& second )
+{
+ return std::max( compute_maximal_distance_non_symmetric(first,second) , compute_maximal_distance_non_symmetric(second,first) );
+}
+
+
+bool comparePairsForMerging( std::pair< double , unsigned > first , std::pair< double , unsigned > second )
+{
+ return (first.first < second.first);
+}
+
+
+
+
+double compute_inner_product( const Persistence_landscape& l1 , const Persistence_landscape& l2 )
+{
+ bool dbg = false;
+ double result = 0;
+
+ for ( size_t level = 0 ; level != std::min( l1.size() , l2.size() ) ; ++level )
+ {
+ if ( dbg ){std::cerr << "Computing inner product for a level : " << level << std::endl;getchar();}
+ if ( l1.land[level].size() * l2.land[level].size() == 0 )continue;
+
+ //endpoints of the interval on which we will compute the inner product of two locally linear functions:
+ double x1 = -std::numeric_limits<int>::max();
+ double x2;
+ if ( l1.land[level][1].first < l2.land[level][1].first )
+ {
+ x2 = l1.land[level][1].first;
+ }
+ else
+ {
+ x2 = l2.land[level][1].first;
+ }
+
+ //iterators for the landscapes l1 and l2
+ size_t l1It = 0;
+ size_t l2It = 0;
+
+ while ( (l1It < l1.land[level].size()-1) && (l2It < l2.land[level].size()-1) )
+ {
+ //compute the value of a inner product on a interval [x1,x2]
+
+ double a,b,c,d;
+
+ if ( l1.land[level][l1It+1].first != l1.land[level][l1It].first )
+ {
+ a = (l1.land[level][l1It+1].second - l1.land[level][l1It].second)/(l1.land[level][l1It+1].first - l1.land[level][l1It].first);
+ }
+ else
+ {
+ a = 0;
+ }
+ b = l1.land[level][l1It].second - a*l1.land[level][l1It].first;
+ if ( l2.land[level][l2It+1].first != l2.land[level][l2It].first )
+ {
+ c = (l2.land[level][l2It+1].second - l2.land[level][l2It].second)/(l2.land[level][l2It+1].first - l2.land[level][l2It].first);
+ }
+ else
+ {
+ c = 0;
+ }
+ d = l2.land[level][l2It].second - c*l2.land[level][l2It].first;
+
+ double contributionFromThisPart
+ =
+ (a*c*x2*x2*x2/3 + (a*d+b*c)*x2*x2/2 + b*d*x2) - (a*c*x1*x1*x1/3 + (a*d+b*c)*x1*x1/2 + b*d*x1);
+
+ result += contributionFromThisPart;
+
+ if ( dbg )
+ {
+ std::cerr << "[l1.land[level][l1It].first,l1.land[level][l1It+1].first] : " << l1.land[level][l1It].first << " , " << l1.land[level][l1It+1].first << std::endl;
+ std::cerr << "[l2.land[level][l2It].first,l2.land[level][l2It+1].first] : " << l2.land[level][l2It].first << " , " << l2.land[level][l2It+1].first << std::endl;
+ std::cerr << "a : " << a << ", b : " << b << " , c: " << c << ", d : " << d << std::endl;
+ std::cerr << "x1 : " << x1 << " , x2 : " << x2 << std::endl;
+ std::cerr << "contributionFromThisPart : " << contributionFromThisPart << std::endl;
+ std::cerr << "result : " << result << std::endl;
+ getchar();
+ }
+
+ //we have two intervals in which functions are constant:
+ //[l1.land[level][l1It].first , l1.land[level][l1It+1].first]
+ //and
+ //[l2.land[level][l2It].first , l2.land[level][l2It+1].first]
+ //We also have an interval [x1,x2]. Since the intervals in the landscapes cover the whole R, then it is clear that x2
+ //is either l1.land[level][l1It+1].first of l2.land[level][l2It+1].first or both. Lets test it.
+ if ( x2 == l1.land[level][l1It+1].first )
+ {
+ if ( x2 == l2.land[level][l2It+1].first )
+ {
+ //in this case, we increment both:
+ ++l2It;
+ if ( dbg ){std::cerr << "Incrementing both \n";}
+ }
+ else
+ {
+ if ( dbg ){std::cerr << "Incrementing first \n";}
+ }
+ ++l1It;
+ }
+ else
+ {
+ //in this case we increment l2It
+ ++l2It;
+ if ( dbg ){std::cerr << "Incrementing second \n";}
+ }
+ //Now, we shift x1 and x2:
+ x1 = x2;
+ if ( l1.land[level][l1It+1].first < l2.land[level][l2It+1].first )
+ {
+ x2 = l1.land[level][l1It+1].first;
+ }
+ else
+ {
+ x2 = l2.land[level][l2It+1].first;
+ }
+
+ }
+
+ }
+ return result;
+}
+
+
+void Persistence_landscape::plot( const char* filename, double xRangeBegin , double xRangeEnd , double yRangeBegin , double yRangeEnd , int from , int to )
+{
+ //this program create a gnuplot script file that allows to plot persistence diagram.
+ std::ofstream out;
+
+ std::ostringstream nameSS;
+ nameSS << filename << "_GnuplotScript";
+ std::string nameStr = nameSS.str();
+ out.open( nameStr );
+
+ if ( (xRangeBegin != std::numeric_limits<double>::max()) || (xRangeEnd != std::numeric_limits<double>::max()) || (yRangeBegin != std::numeric_limits<double>::max()) || (yRangeEnd != std::numeric_limits<double>::max()) )
+ {
+ out << "set xrange [" << xRangeBegin << " : " << xRangeEnd << "]" << std::endl;
+ out << "set yrange [" << yRangeBegin << " : " << yRangeEnd << "]" << std::endl;
+ }
+
+ if ( from == std::numeric_limits<int>::max() ){from = 0;}
+ if ( to == std::numeric_limits<int>::max() ){to = this->land.size();}
+
+ out << "plot ";
+ for ( size_t lambda= std::min((size_t)from,this->land.size()) ; lambda != std::min((size_t)to,this->land.size()) ; ++lambda )
+ {
+ //out << " '-' using 1:2 title 'l" << lambda << "' with lp";
+ out << " '-' using 1:2 notitle with lp";
+ if ( lambda+1 != std::min((size_t)to,this->land.size()) )
+ {
+ out << ", \\";
+ }
+ out << std::endl;
+ }
+
+ for ( size_t lambda= std::min((size_t)from,this->land.size()) ; lambda != std::min((size_t)to,this->land.size()) ; ++lambda )
+ {
+ for ( size_t i = 1 ; i != this->land[lambda].size()-1 ; ++i )
+ {
+ out << this->land[lambda][i].first << " " << this->land[lambda][i].second << std::endl;
+ }
+ out << "EOF" << std::endl;
+ }
+ std::cout << "Gnuplot script to visualize persistence diagram written to the file: " << nameStr << ". Type load '" << nameStr << "' in gnuplot to visualize." << std::endl;
+}
+
+
+
+
+}//namespace gudhi stat
+}//namespace gudhi
+
+
+#endif