summaryrefslogtreecommitdiff
path: root/src/Kernels/include/gudhi/kernel.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Kernels/include/gudhi/kernel.h')
-rw-r--r--src/Kernels/include/gudhi/kernel.h365
1 files changed, 365 insertions, 0 deletions
diff --git a/src/Kernels/include/gudhi/kernel.h b/src/Kernels/include/gudhi/kernel.h
new file mode 100644
index 00000000..3293cc62
--- /dev/null
+++ b/src/Kernels/include/gudhi/kernel.h
@@ -0,0 +1,365 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author(s): Mathieu Carrière
+ *
+ * Copyright (C) 2018 INRIA (France)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef KERNEL_H_
+#define KERNEL_H_
+
+#include <cstdlib>
+#include <vector>
+#include <algorithm>
+#include <cmath>
+#include <random>
+#include <limits> //for numeric_limits<>
+#include <utility> //for pair<>
+
+#include <boost/math/constants/constants.hpp>
+
+
+namespace Gudhi {
+namespace kernel {
+
+using PD = std::vector<std::pair<double,double> >;
+double pi = boost::math::constants::pi<double>();
+
+
+
+
+// ********************************************************************
+// Utils.
+// ********************************************************************
+
+bool sortAngle(const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);}
+bool myComp(const std::pair<int,double> & P1, const std::pair<int,double> & P2){return P1.second < P2.second;}
+
+double pss_weight(std::pair<double,double> P){
+ if(P.second > P.first) return 1;
+ else return -1;
+}
+
+double arctan_weight(std::pair<double,double> P){
+ return atan(P.second - P.first);
+}
+
+// Compute the angle formed by two points of a PD
+double compute_angle(const PD & PersDiag, const int & i, const int & j){
+ std::pair<double,double> vect; double x1,y1, x2,y2;
+ x1 = PersDiag[i].first; y1 = PersDiag[i].second;
+ x2 = PersDiag[j].first; y2 = PersDiag[j].second;
+ if (y1 - y2 > 0){
+ vect.first = y1 - y2;
+ vect.second = x2 - x1;}
+ else{
+ if(y1 - y2 < 0){
+ vect.first = y2 - y1;
+ vect.second = x1 - x2;
+ }
+ else{
+ vect.first = 0;
+ vect.second = abs(x1 - x2);}
+ }
+ double norm = std::sqrt(vect.first*vect.first + vect.second*vect.second);
+ return asin(vect.second/norm);
+}
+
+// Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi]
+double compute_int_cos(const double & alpha, const double & beta){
+ double res = 0;
+ if (alpha >= 0 && alpha <= pi){
+ if (cos(alpha) >= 0){
+ if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
+ else{res = sin(beta)-sin(alpha);}
+ }
+ else{
+ if(1.5*pi <= beta){res = 2+sin(alpha)+sin(beta);}
+ else{res = sin(alpha)-sin(beta);}
+ }
+ }
+ if (alpha >= -pi && alpha <= 0){
+ if (cos(alpha) <= 0){
+ if(-pi/2 <= beta){res = 2+sin(alpha)+sin(beta);}
+ else{res = sin(alpha)-sin(beta);}
+ }
+ else{
+ if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
+ else{res = sin(beta)-sin(alpha);}
+ }
+ }
+ return res;
+}
+
+double compute_int(const double & theta1, const double & theta2, const int & p, const int & q, const PD & PD1, const PD & PD2){
+ double norm = std::sqrt( (PD1[p].first-PD2[q].first)*(PD1[p].first-PD2[q].first) + (PD1[p].second-PD2[q].second)*(PD1[p].second-PD2[q].second) );
+ double angle1;
+ if (PD1[p].first > PD2[q].first)
+ angle1 = theta1 - asin( (PD1[p].second-PD2[q].second)/norm );
+ else
+ angle1 = theta1 - asin( (PD2[q].second-PD1[p].second)/norm );
+ double angle2 = angle1 + theta2 - theta1;
+ double integral = compute_int_cos(angle1,angle2);
+ return norm*integral;
+}
+
+template<class Weight = std::function<double (std::pair<double,double>) > >
+std::vector<std::pair<double,double> > Fourier_feat(PD D, std::vector<std::pair<double,double> > Z, Weight weight = arctan_weight){
+ int m = D.size(); std::vector<std::pair<double,double> > B; int M = Z.size();
+ for(int i = 0; i < M; i++){
+ double d1 = 0; double d2 = 0; double zx = Z[i].first; double zy = Z[i].second;
+ for(int j = 0; j < m; j++){
+ double x = D[j].first; double y = D[j].second;
+ d1 += weight(D[j])*cos(x*zx + y*zy);
+ d2 += weight(D[j])*sin(x*zx + y*zy);
+ }
+ B.emplace_back(d1,d2);
+ }
+ return B;
+}
+
+std::vector<std::pair<double,double> > random_Fourier(double sigma, int M = 1000){
+ std::normal_distribution<double> distrib(0,1); std::vector<std::pair<double,double> > Z; std::random_device rd;
+ for(int i = 0; i < M; i++){
+ std::mt19937 e1(rd()); std::mt19937 e2(rd());
+ double zx = distrib(e1); double zy = distrib(e2);
+ Z.emplace_back(zx/sigma,zy/sigma);
+ }
+ return Z;
+}
+
+
+
+
+
+
+
+
+
+
+// ********************************************************************
+// Kernel computation.
+// ********************************************************************
+
+
+
+
+
+/** \brief Computes the Linear Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
+ * \ingroup kernel
+ *
+ * @param[in] PD1 first persistence diagram.
+ * @param[in] PD2 second persistence diagram.
+ * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
+ * @param[in] weight weight function for the points in the diagrams.
+ * @param[in] M number of Fourier features (set -1 for exact computation).
+ *
+ */
+template<class Weight = std::function<double (std::pair<double,double>) > >
+double linear_persistence_weighted_gaussian_kernel(const PD & PD1, const PD & PD2, double sigma, Weight weight = arctan_weight, int M = 1000){
+
+ if(M == -1){
+ int num_pts1 = PD1.size(); int num_pts2 = PD2.size(); double k = 0;
+ for(int i = 0; i < num_pts1; i++)
+ for(int j = 0; j < num_pts2; j++)
+ k += weight(PD1[i])*weight(PD2[j])*exp(-((PD1[i].first-PD2[j].first)*(PD1[i].first-PD2[j].first) + (PD1[i].second-PD2[j].second)*(PD1[i].second-PD2[j].second))/(2*sigma*sigma));
+ return k;
+ }
+ else{
+ std::vector<std::pair<double,double> > Z = random_Fourier(sigma, M);
+ std::vector<std::pair<double,double> > B1 = Fourier_feat(PD1,Z,weight);
+ std::vector<std::pair<double,double> > B2 = Fourier_feat(PD2,Z,weight);
+ double d = 0; for(int i = 0; i < M; i++) d += B1[i].first*B2[i].first + B1[i].second*B2[i].second;
+ return d/M;
+ }
+}
+
+/** \brief Computes the Persistence Scale Space Kernel between two persistence diagrams with random Fourier features.
+ * \ingroup kernel
+ *
+ * @param[in] PD1 first persistence diagram.
+ * @param[in] PD2 second persistence diagram.
+ * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
+ * @param[in] M number of Fourier features (set -1 for exact computation).
+ *
+ */
+double persistence_scale_space_kernel(const PD & PD1, const PD & PD2, double sigma, int M = 1000){
+ PD pd1 = PD1; int numpts = PD1.size(); for(int i = 0; i < numpts; i++) pd1.emplace_back(PD1[i].second,PD1[i].first);
+ PD pd2 = PD2; numpts = PD2.size(); for(int i = 0; i < numpts; i++) pd2.emplace_back(PD2[i].second,PD2[i].first);
+ return linear_persistence_weighted_gaussian_kernel(pd1, pd2, 2*sqrt(sigma), pss_weight, M) / (2*8*pi*sigma);
+}
+
+
+/** \brief Computes the Gaussian Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
+ * \ingroup kernel
+ *
+ * @param[in] PD1 first persistence diagram.
+ * @param[in] PD2 second persistence diagram.
+ * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
+ * @param[in] tau bandwidth parameter of the Gaussian Kernel used between the embeddings.
+ * @param[in] weight weight function for the points in the diagrams.
+ * @param[in] M number of Fourier features (set -1 for exact computation).
+ *
+ */
+template<class Weight = std::function<double (std::pair<double,double>) > >
+double gaussian_persistence_weighted_gaussian_kernel(const PD & PD1, const PD & PD2, double sigma, double tau, Weight weight = arctan_weight, int M = 1000){
+ double k1 = linear_persistence_weighted_gaussian_kernel(PD1,PD1,sigma,weight,M);
+ double k2 = linear_persistence_weighted_gaussian_kernel(PD2,PD2,sigma,weight,M);
+ double k3 = linear_persistence_weighted_gaussian_kernel(PD1,PD2,sigma,weight,M);
+ return exp( - (k1+k2-2*k3) / (2*tau*tau) );
+}
+
+
+/** \brief Computes the Sliced Wasserstein Kernel between two persistence diagrams with sampled directions.
+ * \ingroup kernel
+ *
+ * @param[in] PD1 first persistence diagram.
+ * @param[in] PD2 second persistence diagram.
+ * @param[in] sigma bandwidth parameter.
+ * @param[in] N number of points sampled on the circle (set -1 for exact computation).
+ *
+ */
+double sliced_wasserstein_kernel(PD PD1, PD PD2, double sigma, int N = 100){
+
+ if(N == -1){
+
+ // Add projections onto diagonal.
+ int n1, n2; n1 = PD1.size(); n2 = PD2.size(); double max_ordinate = std::numeric_limits<double>::lowest();
+ for (int i = 0; i < n2; i++){
+ max_ordinate = std::max(max_ordinate, PD2[i].second);
+ PD1.emplace_back( (PD2[i].first+PD2[i].second)/2, (PD2[i].first+PD2[i].second)/2 );
+ }
+ for (int i = 0; i < n1; i++){
+ max_ordinate = std::max(max_ordinate, PD1[i].second);
+ PD2.emplace_back( (PD1[i].first+PD1[i].second)/2, (PD1[i].first+PD1[i].second)/2 );
+ }
+ int num_pts_dgm = PD1.size();
+
+ // Slightly perturb the points so that the PDs are in generic positions.
+ int mag = 0; while(max_ordinate > 10){mag++; max_ordinate/=10;}
+ double thresh = pow(10,-5+mag);
+ srand(time(NULL));
+ for (int i = 0; i < num_pts_dgm; i++){
+ PD1[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD1[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
+ PD2[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD2[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
+ }
+
+ // Compute all angles in both PDs.
+ std::vector<std::pair<double, std::pair<int,int> > > angles1, angles2;
+ for (int i = 0; i < num_pts_dgm; i++){
+ for (int j = i+1; j < num_pts_dgm; j++){
+ double theta1 = compute_angle(PD1,i,j); double theta2 = compute_angle(PD2,i,j);
+ angles1.emplace_back(theta1, std::pair<int,int>(i,j));
+ angles2.emplace_back(theta2, std::pair<int,int>(i,j));
+ }
+ }
+
+ // Sort angles.
+ std::sort(angles1.begin(), angles1.end(), sortAngle); std::sort(angles2.begin(), angles2.end(), sortAngle);
+
+ // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
+ std::vector<int> orderp1, orderp2;
+ for (int i = 0; i < num_pts_dgm; i++){ orderp1.push_back(i); orderp2.push_back(i); }
+ std::sort( orderp1.begin(), orderp1.end(), [=](int i, int j){ if(PD1[i].second != PD1[j].second) return (PD1[i].second < PD1[j].second); else return (PD1[i].first > PD1[j].first); } );
+ std::sort( orderp2.begin(), orderp2.end(), [=](int i, int j){ if(PD2[i].second != PD2[j].second) return (PD2[i].second < PD2[j].second); else return (PD2[i].first > PD2[j].first); } );
+
+ // Find the inverses of the orders.
+ std::vector<int> order1(num_pts_dgm); std::vector<int> order2(num_pts_dgm);
+ for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp1[j] == i){ order1[i] = j; break; }
+ for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp2[j] == i){ order2[i] = j; break; }
+
+ // Record all inversions of points in the orders as theta varies along the positive half-disk.
+ std::vector<std::vector<std::pair<int,double> > > anglePerm1(num_pts_dgm);
+ std::vector<std::vector<std::pair<int,double> > > anglePerm2(num_pts_dgm);
+
+ int M1 = angles1.size();
+ for (int i = 0; i < M1; i++){
+ double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second;
+ anglePerm1[order1[p]].emplace_back(p,theta);
+ anglePerm1[order1[q]].emplace_back(q,theta);
+ int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a;
+ }
+
+ int M2 = angles2.size();
+ for (int i = 0; i < M2; i++){
+ double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second;
+ anglePerm2[order2[p]].emplace_back(p,theta);
+ anglePerm2[order2[q]].emplace_back(q,theta);
+ int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a;
+ }
+
+ for (int i = 0; i < num_pts_dgm; i++){
+ anglePerm1[order1[i]].emplace_back(i,pi/2);
+ anglePerm2[order2[i]].emplace_back(i,pi/2);
+ }
+
+ // Compute the SW distance with the list of inversions.
+ double sw = 0;
+ for (int i = 0; i < num_pts_dgm; i++){
+ std::vector<std::pair<int,double> > U,V; U = anglePerm1[i]; V = anglePerm2[i];
+ double theta1, theta2; theta1 = -pi/2;
+ unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(U[ku].second,V[kv].second);
+ while(theta1 != pi/2){
+ if(PD1[U[ku].first].first != PD2[V[kv].first].first || PD1[U[ku].first].second != PD2[V[kv].first].second)
+ if(theta1 != theta2)
+ sw += compute_int(theta1, theta2, U[ku].first, V[kv].first, PD1, PD2);
+ theta1 = theta2;
+ if ( (theta2 == U[ku].second) && ku < U.size()-1 ) ku++;
+ if ( (theta2 == V[kv].second) && kv < V.size()-1 ) kv++;
+ theta2 = std::min(U[ku].second, V[kv].second);
+ }
+ }
+
+ return exp( -(sw/pi)/(2*sigma*sigma) );
+
+ }
+
+
+ else{
+ double step = pi/N; double sw = 0;
+
+ // Add projections onto diagonal.
+ int n1, n2; n1 = PD1.size(); n2 = PD2.size();
+ for (int i = 0; i < n2; i++)
+ PD1.emplace_back( (PD2[i].first + PD2[i].second)/2, (PD2[i].first + PD2[i].second)/2 );
+ for (int i = 0; i < n1; i++)
+ PD2.emplace_back( (PD1[i].first + PD1[i].second)/2, (PD1[i].first + PD1[i].second)/2 );
+ int n = PD1.size();
+
+ // Sort and compare all projections.
+ //#pragma omp parallel for
+ for (int i = 0; i < N; i++){
+ std::vector<std::pair<int,double> > L1, L2;
+ for (int j = 0; j < n; j++){
+ L1.emplace_back( j, PD1[j].first*cos(-pi/2+i*step) + PD1[j].second*sin(-pi/2+i*step) );
+ L2.emplace_back( j, PD2[j].first*cos(-pi/2+i*step) + PD2[j].second*sin(-pi/2+i*step) );
+ }
+ std::sort(L1.begin(),L1.end(), myComp); std::sort(L2.begin(),L2.end(), myComp);
+ double f = 0; for (int j = 0; j < n; j++) f += std::abs(L1[j].second - L2[j].second);
+ sw += f*step;
+ }
+ return exp( -(sw/pi)/(2*sigma*sigma) );
+ }
+}
+
+
+} // namespace kernel
+
+} // namespace Gudhi
+
+#endif //KERNEL_H_