summaryrefslogtreecommitdiff
path: root/src/Kernels/include/gudhi/kernel.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/Kernels/include/gudhi/kernel.h')
-rw-r--r--src/Kernels/include/gudhi/kernel.h365
1 files changed, 0 insertions, 365 deletions
diff --git a/src/Kernels/include/gudhi/kernel.h b/src/Kernels/include/gudhi/kernel.h
deleted file mode 100644
index 3293cc62..00000000
--- a/src/Kernels/include/gudhi/kernel.h
+++ /dev/null
@@ -1,365 +0,0 @@
-/* This file is part of the Gudhi Library. The Gudhi library
- * (Geometric Understanding in Higher Dimensions) is a generic C++
- * library for computational topology.
- *
- * Author(s): Mathieu Carrière
- *
- * Copyright (C) 2018 INRIA (France)
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
-#ifndef KERNEL_H_
-#define KERNEL_H_
-
-#include <cstdlib>
-#include <vector>
-#include <algorithm>
-#include <cmath>
-#include <random>
-#include <limits> //for numeric_limits<>
-#include <utility> //for pair<>
-
-#include <boost/math/constants/constants.hpp>
-
-
-namespace Gudhi {
-namespace kernel {
-
-using PD = std::vector<std::pair<double,double> >;
-double pi = boost::math::constants::pi<double>();
-
-
-
-
-// ********************************************************************
-// Utils.
-// ********************************************************************
-
-bool sortAngle(const std::pair<double, std::pair<int,int> >& p1, const std::pair<double, std::pair<int,int> >& p2){return (p1.first < p2.first);}
-bool myComp(const std::pair<int,double> & P1, const std::pair<int,double> & P2){return P1.second < P2.second;}
-
-double pss_weight(std::pair<double,double> P){
- if(P.second > P.first) return 1;
- else return -1;
-}
-
-double arctan_weight(std::pair<double,double> P){
- return atan(P.second - P.first);
-}
-
-// Compute the angle formed by two points of a PD
-double compute_angle(const PD & PersDiag, const int & i, const int & j){
- std::pair<double,double> vect; double x1,y1, x2,y2;
- x1 = PersDiag[i].first; y1 = PersDiag[i].second;
- x2 = PersDiag[j].first; y2 = PersDiag[j].second;
- if (y1 - y2 > 0){
- vect.first = y1 - y2;
- vect.second = x2 - x1;}
- else{
- if(y1 - y2 < 0){
- vect.first = y2 - y1;
- vect.second = x1 - x2;
- }
- else{
- vect.first = 0;
- vect.second = abs(x1 - x2);}
- }
- double norm = std::sqrt(vect.first*vect.first + vect.second*vect.second);
- return asin(vect.second/norm);
-}
-
-// Compute the integral of |cos()| between alpha and beta, valid only if alpha is in [-pi,pi] and beta-alpha is in [0,pi]
-double compute_int_cos(const double & alpha, const double & beta){
- double res = 0;
- if (alpha >= 0 && alpha <= pi){
- if (cos(alpha) >= 0){
- if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
- else{res = sin(beta)-sin(alpha);}
- }
- else{
- if(1.5*pi <= beta){res = 2+sin(alpha)+sin(beta);}
- else{res = sin(alpha)-sin(beta);}
- }
- }
- if (alpha >= -pi && alpha <= 0){
- if (cos(alpha) <= 0){
- if(-pi/2 <= beta){res = 2+sin(alpha)+sin(beta);}
- else{res = sin(alpha)-sin(beta);}
- }
- else{
- if(pi/2 <= beta){res = 2-sin(alpha)-sin(beta);}
- else{res = sin(beta)-sin(alpha);}
- }
- }
- return res;
-}
-
-double compute_int(const double & theta1, const double & theta2, const int & p, const int & q, const PD & PD1, const PD & PD2){
- double norm = std::sqrt( (PD1[p].first-PD2[q].first)*(PD1[p].first-PD2[q].first) + (PD1[p].second-PD2[q].second)*(PD1[p].second-PD2[q].second) );
- double angle1;
- if (PD1[p].first > PD2[q].first)
- angle1 = theta1 - asin( (PD1[p].second-PD2[q].second)/norm );
- else
- angle1 = theta1 - asin( (PD2[q].second-PD1[p].second)/norm );
- double angle2 = angle1 + theta2 - theta1;
- double integral = compute_int_cos(angle1,angle2);
- return norm*integral;
-}
-
-template<class Weight = std::function<double (std::pair<double,double>) > >
-std::vector<std::pair<double,double> > Fourier_feat(PD D, std::vector<std::pair<double,double> > Z, Weight weight = arctan_weight){
- int m = D.size(); std::vector<std::pair<double,double> > B; int M = Z.size();
- for(int i = 0; i < M; i++){
- double d1 = 0; double d2 = 0; double zx = Z[i].first; double zy = Z[i].second;
- for(int j = 0; j < m; j++){
- double x = D[j].first; double y = D[j].second;
- d1 += weight(D[j])*cos(x*zx + y*zy);
- d2 += weight(D[j])*sin(x*zx + y*zy);
- }
- B.emplace_back(d1,d2);
- }
- return B;
-}
-
-std::vector<std::pair<double,double> > random_Fourier(double sigma, int M = 1000){
- std::normal_distribution<double> distrib(0,1); std::vector<std::pair<double,double> > Z; std::random_device rd;
- for(int i = 0; i < M; i++){
- std::mt19937 e1(rd()); std::mt19937 e2(rd());
- double zx = distrib(e1); double zy = distrib(e2);
- Z.emplace_back(zx/sigma,zy/sigma);
- }
- return Z;
-}
-
-
-
-
-
-
-
-
-
-
-// ********************************************************************
-// Kernel computation.
-// ********************************************************************
-
-
-
-
-
-/** \brief Computes the Linear Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
- * @param[in] weight weight function for the points in the diagrams.
- * @param[in] M number of Fourier features (set -1 for exact computation).
- *
- */
-template<class Weight = std::function<double (std::pair<double,double>) > >
-double linear_persistence_weighted_gaussian_kernel(const PD & PD1, const PD & PD2, double sigma, Weight weight = arctan_weight, int M = 1000){
-
- if(M == -1){
- int num_pts1 = PD1.size(); int num_pts2 = PD2.size(); double k = 0;
- for(int i = 0; i < num_pts1; i++)
- for(int j = 0; j < num_pts2; j++)
- k += weight(PD1[i])*weight(PD2[j])*exp(-((PD1[i].first-PD2[j].first)*(PD1[i].first-PD2[j].first) + (PD1[i].second-PD2[j].second)*(PD1[i].second-PD2[j].second))/(2*sigma*sigma));
- return k;
- }
- else{
- std::vector<std::pair<double,double> > Z = random_Fourier(sigma, M);
- std::vector<std::pair<double,double> > B1 = Fourier_feat(PD1,Z,weight);
- std::vector<std::pair<double,double> > B2 = Fourier_feat(PD2,Z,weight);
- double d = 0; for(int i = 0; i < M; i++) d += B1[i].first*B2[i].first + B1[i].second*B2[i].second;
- return d/M;
- }
-}
-
-/** \brief Computes the Persistence Scale Space Kernel between two persistence diagrams with random Fourier features.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
- * @param[in] M number of Fourier features (set -1 for exact computation).
- *
- */
-double persistence_scale_space_kernel(const PD & PD1, const PD & PD2, double sigma, int M = 1000){
- PD pd1 = PD1; int numpts = PD1.size(); for(int i = 0; i < numpts; i++) pd1.emplace_back(PD1[i].second,PD1[i].first);
- PD pd2 = PD2; numpts = PD2.size(); for(int i = 0; i < numpts; i++) pd2.emplace_back(PD2[i].second,PD2[i].first);
- return linear_persistence_weighted_gaussian_kernel(pd1, pd2, 2*sqrt(sigma), pss_weight, M) / (2*8*pi*sigma);
-}
-
-
-/** \brief Computes the Gaussian Persistence Weighted Gaussian Kernel between two persistence diagrams with random Fourier features.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter of the Gaussian Kernel used for the Kernel Mean Embedding of the diagrams.
- * @param[in] tau bandwidth parameter of the Gaussian Kernel used between the embeddings.
- * @param[in] weight weight function for the points in the diagrams.
- * @param[in] M number of Fourier features (set -1 for exact computation).
- *
- */
-template<class Weight = std::function<double (std::pair<double,double>) > >
-double gaussian_persistence_weighted_gaussian_kernel(const PD & PD1, const PD & PD2, double sigma, double tau, Weight weight = arctan_weight, int M = 1000){
- double k1 = linear_persistence_weighted_gaussian_kernel(PD1,PD1,sigma,weight,M);
- double k2 = linear_persistence_weighted_gaussian_kernel(PD2,PD2,sigma,weight,M);
- double k3 = linear_persistence_weighted_gaussian_kernel(PD1,PD2,sigma,weight,M);
- return exp( - (k1+k2-2*k3) / (2*tau*tau) );
-}
-
-
-/** \brief Computes the Sliced Wasserstein Kernel between two persistence diagrams with sampled directions.
- * \ingroup kernel
- *
- * @param[in] PD1 first persistence diagram.
- * @param[in] PD2 second persistence diagram.
- * @param[in] sigma bandwidth parameter.
- * @param[in] N number of points sampled on the circle (set -1 for exact computation).
- *
- */
-double sliced_wasserstein_kernel(PD PD1, PD PD2, double sigma, int N = 100){
-
- if(N == -1){
-
- // Add projections onto diagonal.
- int n1, n2; n1 = PD1.size(); n2 = PD2.size(); double max_ordinate = std::numeric_limits<double>::lowest();
- for (int i = 0; i < n2; i++){
- max_ordinate = std::max(max_ordinate, PD2[i].second);
- PD1.emplace_back( (PD2[i].first+PD2[i].second)/2, (PD2[i].first+PD2[i].second)/2 );
- }
- for (int i = 0; i < n1; i++){
- max_ordinate = std::max(max_ordinate, PD1[i].second);
- PD2.emplace_back( (PD1[i].first+PD1[i].second)/2, (PD1[i].first+PD1[i].second)/2 );
- }
- int num_pts_dgm = PD1.size();
-
- // Slightly perturb the points so that the PDs are in generic positions.
- int mag = 0; while(max_ordinate > 10){mag++; max_ordinate/=10;}
- double thresh = pow(10,-5+mag);
- srand(time(NULL));
- for (int i = 0; i < num_pts_dgm; i++){
- PD1[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD1[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
- PD2[i].first += thresh*(1.0-2.0*rand()/RAND_MAX); PD2[i].second += thresh*(1.0-2.0*rand()/RAND_MAX);
- }
-
- // Compute all angles in both PDs.
- std::vector<std::pair<double, std::pair<int,int> > > angles1, angles2;
- for (int i = 0; i < num_pts_dgm; i++){
- for (int j = i+1; j < num_pts_dgm; j++){
- double theta1 = compute_angle(PD1,i,j); double theta2 = compute_angle(PD2,i,j);
- angles1.emplace_back(theta1, std::pair<int,int>(i,j));
- angles2.emplace_back(theta2, std::pair<int,int>(i,j));
- }
- }
-
- // Sort angles.
- std::sort(angles1.begin(), angles1.end(), sortAngle); std::sort(angles2.begin(), angles2.end(), sortAngle);
-
- // Initialize orders of the points of both PDs (given by ordinates when theta = -pi/2).
- std::vector<int> orderp1, orderp2;
- for (int i = 0; i < num_pts_dgm; i++){ orderp1.push_back(i); orderp2.push_back(i); }
- std::sort( orderp1.begin(), orderp1.end(), [=](int i, int j){ if(PD1[i].second != PD1[j].second) return (PD1[i].second < PD1[j].second); else return (PD1[i].first > PD1[j].first); } );
- std::sort( orderp2.begin(), orderp2.end(), [=](int i, int j){ if(PD2[i].second != PD2[j].second) return (PD2[i].second < PD2[j].second); else return (PD2[i].first > PD2[j].first); } );
-
- // Find the inverses of the orders.
- std::vector<int> order1(num_pts_dgm); std::vector<int> order2(num_pts_dgm);
- for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp1[j] == i){ order1[i] = j; break; }
- for(int i = 0; i < num_pts_dgm; i++) for (int j = 0; j < num_pts_dgm; j++) if(orderp2[j] == i){ order2[i] = j; break; }
-
- // Record all inversions of points in the orders as theta varies along the positive half-disk.
- std::vector<std::vector<std::pair<int,double> > > anglePerm1(num_pts_dgm);
- std::vector<std::vector<std::pair<int,double> > > anglePerm2(num_pts_dgm);
-
- int M1 = angles1.size();
- for (int i = 0; i < M1; i++){
- double theta = angles1[i].first; int p = angles1[i].second.first; int q = angles1[i].second.second;
- anglePerm1[order1[p]].emplace_back(p,theta);
- anglePerm1[order1[q]].emplace_back(q,theta);
- int a = order1[p]; int b = order1[q]; order1[p] = b; order1[q] = a;
- }
-
- int M2 = angles2.size();
- for (int i = 0; i < M2; i++){
- double theta = angles2[i].first; int p = angles2[i].second.first; int q = angles2[i].second.second;
- anglePerm2[order2[p]].emplace_back(p,theta);
- anglePerm2[order2[q]].emplace_back(q,theta);
- int a = order2[p]; int b = order2[q]; order2[p] = b; order2[q] = a;
- }
-
- for (int i = 0; i < num_pts_dgm; i++){
- anglePerm1[order1[i]].emplace_back(i,pi/2);
- anglePerm2[order2[i]].emplace_back(i,pi/2);
- }
-
- // Compute the SW distance with the list of inversions.
- double sw = 0;
- for (int i = 0; i < num_pts_dgm; i++){
- std::vector<std::pair<int,double> > U,V; U = anglePerm1[i]; V = anglePerm2[i];
- double theta1, theta2; theta1 = -pi/2;
- unsigned int ku, kv; ku = 0; kv = 0; theta2 = std::min(U[ku].second,V[kv].second);
- while(theta1 != pi/2){
- if(PD1[U[ku].first].first != PD2[V[kv].first].first || PD1[U[ku].first].second != PD2[V[kv].first].second)
- if(theta1 != theta2)
- sw += compute_int(theta1, theta2, U[ku].first, V[kv].first, PD1, PD2);
- theta1 = theta2;
- if ( (theta2 == U[ku].second) && ku < U.size()-1 ) ku++;
- if ( (theta2 == V[kv].second) && kv < V.size()-1 ) kv++;
- theta2 = std::min(U[ku].second, V[kv].second);
- }
- }
-
- return exp( -(sw/pi)/(2*sigma*sigma) );
-
- }
-
-
- else{
- double step = pi/N; double sw = 0;
-
- // Add projections onto diagonal.
- int n1, n2; n1 = PD1.size(); n2 = PD2.size();
- for (int i = 0; i < n2; i++)
- PD1.emplace_back( (PD2[i].first + PD2[i].second)/2, (PD2[i].first + PD2[i].second)/2 );
- for (int i = 0; i < n1; i++)
- PD2.emplace_back( (PD1[i].first + PD1[i].second)/2, (PD1[i].first + PD1[i].second)/2 );
- int n = PD1.size();
-
- // Sort and compare all projections.
- //#pragma omp parallel for
- for (int i = 0; i < N; i++){
- std::vector<std::pair<int,double> > L1, L2;
- for (int j = 0; j < n; j++){
- L1.emplace_back( j, PD1[j].first*cos(-pi/2+i*step) + PD1[j].second*sin(-pi/2+i*step) );
- L2.emplace_back( j, PD2[j].first*cos(-pi/2+i*step) + PD2[j].second*sin(-pi/2+i*step) );
- }
- std::sort(L1.begin(),L1.end(), myComp); std::sort(L2.begin(),L2.end(), myComp);
- double f = 0; for (int j = 0; j < n; j++) f += std::abs(L1[j].second - L2[j].second);
- sw += f*step;
- }
- return exp( -(sw/pi)/(2*sigma*sigma) );
- }
-}
-
-
-} // namespace kernel
-
-} // namespace Gudhi
-
-#endif //KERNEL_H_