summaryrefslogtreecommitdiff
path: root/src/Nerve_GIC/include/gudhi
diff options
context:
space:
mode:
Diffstat (limited to 'src/Nerve_GIC/include/gudhi')
-rw-r--r--src/Nerve_GIC/include/gudhi/GIC.h975
1 files changed, 975 insertions, 0 deletions
diff --git a/src/Nerve_GIC/include/gudhi/GIC.h b/src/Nerve_GIC/include/gudhi/GIC.h
new file mode 100644
index 00000000..ca8727a0
--- /dev/null
+++ b/src/Nerve_GIC/include/gudhi/GIC.h
@@ -0,0 +1,975 @@
+/* This file is part of the Gudhi Library. The Gudhi library
+ * (Geometric Understanding in Higher Dimensions) is a generic C++
+ * library for computational topology.
+ *
+ * Author: Mathieu Carriere
+ *
+ * Copyright (C) 2017 INRIA
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef GIC_H_
+#define GIC_H_
+
+#include <gudhi/Debug_utils.h>
+#include <gudhi/graph_simplicial_complex.h>
+#include <gudhi/reader_utils.h>
+#include <gudhi/Simplex_tree.h>
+#include <gudhi/Rips_complex.h>
+#include <gudhi/Points_off_io.h>
+#include <gudhi/distance_functions.h>
+
+#include <iostream>
+#include <vector>
+#include <map>
+#include <string>
+#include <limits> // for numeric_limits
+#include <utility> // for pair<>
+#include <algorithm> // for std::max
+#include <random>
+#include <cassert>
+
+namespace Gudhi {
+
+namespace cover_complex {
+
+using Simplex_tree = Gudhi::Simplex_tree<>;
+using Filtration_value = Simplex_tree::Filtration_value;
+using Rips_complex = Gudhi::rips_complex::Rips_complex<Filtration_value>;
+
+
+/**
+ * \class Cover_complex
+ * \brief Cover complex data structure.
+ *
+ * \ingroup cover_complex
+ *
+ * \details
+ * The data structure is a simplicial complex, representing a
+ * Graph Induced simplicial Complex (GIC) or a Nerve,
+ * and whose simplices are computed with a cover C of a point
+ * cloud P, which often comes from the preimages of intervals
+ * covering the image of a function f defined on P.
+ * These intervals are parameterized by their resolution
+ * (either their length or their number)
+ * and their gain (percentage of overlap).
+ * To compute a GIC, one also needs a graph G built on top of P,
+ * whose cliques with vertices belonging to different elements of C
+ * correspond to the simplices of the GIC.
+ *
+ */
+template<typename Point>
+class Cover_complex {
+
+ private:
+ //Graph_induced_complex(std::map<int, double> fun){func = fun;}
+ bool verbose = false; // whether to display information.
+ std::vector<Point> point_cloud;
+ std::vector<std::vector<int> > one_skeleton;
+ typedef int Cover_t; // elements of cover C are indexed by integers.
+ std::vector<std::vector<Cover_t> > simplices;
+ std::map<int, std::vector<Cover_t> > cover;
+ std::map<Cover_t, std::vector<int> > cover_back;
+ int maximal_dim; // maximal dimension of output simplicial complex.
+ int data_dimension; // dimension of input data.
+ int n; // number of points.
+ std::map<Cover_t,int> cover_fct; // integer-valued function that allows to state if two elements of the cover are consecutive or not.
+ std::map<Cover_t,std::pair<int,double> > cover_color; // size and coloring of the vertices of the output simplicial complex.
+ Simplex_tree st;
+
+ std::map<int,std::vector<int> > adjacency_matrix;
+ std::vector<std::vector<double> > distances;
+
+ int resolution_int = -1;
+ double resolution_double = -1;
+ double gain = -1;
+ double rate_constant = 10; // Constant in the subsampling.
+ double rate_power = 0.001; // Power in the subsampling.
+ int mask = 0; // Ignore nodes containing less than mask points.
+
+ std::map<int, double> func;
+ std::map<int, double> func_color;
+ std::vector<int> voronoi_subsamples;
+ std::string cover_name;
+ std::string point_cloud_name;
+ std::string color_name;
+ std::string type; // Nerve or GIC
+ bool functional_cover = false; // whether we use a cover with preimages of a function or not
+
+ // Point comparator
+ struct Less{
+ Less(std::map<int, double> func){Fct = func;}
+ std::map<int, double> Fct;
+ bool operator()(int a, int b){if(Fct[a] == Fct[b]) return a < b; else return Fct[a] < Fct[b];}
+ };
+
+ // DFS
+ private:
+ void dfs(std::map<int,std::vector<int> >& G, int p, std::vector<int>& cc, std::map<int,bool>& visit){
+ cc.push_back(p);
+ visit[p] = true; int neighb = G[p].size();
+ for (int i = 0; i < neighb; i++)
+ if ( visit.find(G[p][i]) != visit.end() )
+ if( !(visit[G[p][i]]) )
+ dfs(G,G[p][i],cc,visit);
+ }
+
+ // Find random number in [0,1].
+ double GetUniform(){
+ static std::default_random_engine re;
+ static std::uniform_real_distribution<double> Dist(0,1);
+ return Dist(re);
+ }
+
+ // Subsample points.
+ void SampleWithoutReplacement(int populationSize, int sampleSize, std::vector<int> & samples){
+ int t = 0; int m = 0; double u;
+ while (m < sampleSize){
+ u = GetUniform();
+ if ( (populationSize - t)*u >= sampleSize - m )
+ t++;
+ else{samples[m] = t; t++; m++;}
+ }
+ }
+
+ private:
+ void fill_adjacency_matrix_from_st(){
+ std::vector<int> empty;
+ for(int i = 0; i < n; i++) adjacency_matrix[i] = empty;
+ for (auto simplex : st.complex_simplex_range()) {
+ if(st.dimension(simplex) == 1){
+ std::vector<int> vertices;
+ for(auto vertex : st.simplex_vertex_range(simplex)) vertices.push_back(vertex);
+ adjacency_matrix[vertices[0]].push_back(vertices[1]); adjacency_matrix[vertices[1]].push_back(vertices[0]);
+ }
+ }
+ }
+
+ public:
+ /** \brief Specifies whether the type of the output simplicial complex.
+ *
+ * @param[in] t string (either "GIC" or "Nerve").
+ *
+ */
+ void set_type(const std::string & t){type = t;}
+
+ public:
+ /** \brief Specifies whether the program should display information or not.
+ *
+ * @param[in] verb boolean (true = display info, false = do not display info).
+ *
+ */
+ void set_verbose(bool verb = false){verbose = verb;}
+
+ public:
+ /** \brief Sets the constants used to subsample the data set. These constants are
+ * explained in \cite Carriere17c.
+ *
+ * @param[in] constant double.
+ * @param[in] power double.
+ *
+ */
+ void set_subsampling(double constant, double power){rate_constant = constant; rate_power = power;}
+
+ public:
+ /** \brief Sets the mask, which is a threshold integer such that nodes in the complex that contain a number of data points which is less than or equal to
+ * this threshold are not displayed.
+ *
+ * @param[in] nodemask integer.
+ *
+ */
+ void set_mask(int nodemask){mask = nodemask;}
+
+ public:
+ /** \brief Reads and stores the input point cloud.
+ *
+ * @param[in] off_file_name name of the input .OFF or .nOFF file.
+ *
+ */
+ bool read_point_cloud(const std::string & off_file_name){
+
+ point_cloud_name = off_file_name; std::ifstream input(off_file_name); std::string line;
+
+ char comment = '#';
+ while(comment == '#'){getline(input, line); if(!line.empty() && !std::all_of(line.begin(),line.end(),isspace)) comment = line[line.find_first_not_of(' ')];}
+ if(std::strcmp((char*) line.c_str(),"nOFF")==0){
+ comment = '#'; while(comment == '#'){getline(input, line); if(!line.empty() && !std::all_of(line.begin(),line.end(),isspace)) comment = line[line.find_first_not_of(' ')];}
+ std::stringstream stream(line); stream >> data_dimension;
+ }
+ else data_dimension = 3;
+
+ comment = '#'; int numedges, numfaces, i, num;
+ while(comment == '#'){getline(input, line); if(!line.empty() && !std::all_of(line.begin(),line.end(),isspace)) comment = line[line.find_first_not_of(' ')];}
+ std::stringstream stream(line); stream >> n; stream >> numfaces; stream >> numedges;
+
+ i = 0; while(i < n){
+ getline(input, line);
+ if(!line.empty() && line[line.find_first_not_of(' ')] != '#' && !std::all_of(line.begin(),line.end(),isspace)){
+ std::vector<double> point; std::istringstream iss(line);
+ point.assign(std::istream_iterator<double>(iss), std::istream_iterator<double>());
+ point_cloud.emplace_back(point.begin(),point.begin()+data_dimension); i++;
+ }
+ }
+
+ i = 0; while(i < numfaces){
+ getline(input, line);
+ if(!line.empty() && line[line.find_first_not_of(' ')] != '#' && !std::all_of(line.begin(),line.end(),isspace)){
+ std::vector<int> simplex; std::istringstream iss(line);
+ simplex.assign(std::istream_iterator<int>(iss), std::istream_iterator<int>());
+ num = simplex[0]; std::vector<int> edge(2);
+ for(int j = 1; j <= num; j++){ for(int k = j+1; k <= num; k++){ edge[0] = simplex[j]; edge[1] = simplex[k]; one_skeleton.push_back(edge); } }
+ i++;
+ }
+ }
+
+ return input.is_open();
+ }
+
+ // *******************************************************************************************************************
+ // Graphs.
+ // *******************************************************************************************************************
+
+ public: // Set graph from file.
+ /** \brief Creates a graph G from a file containing the edges.
+ *
+ * @param[in] graph_file_name name of the input graph file.
+ * The graph file contains one edge per line,
+ * each edge being represented by the IDs of its two nodes.
+ *
+ */
+ void set_graph_from_file(const std::string & graph_file_name){
+ int neighb; std::ifstream input(graph_file_name);
+ std::string line; int edge[2]; int n = 0;
+ while(std::getline(input,line)){
+ std::stringstream stream(line); stream >> edge[0];
+ while(stream >> neighb){edge[1] = neighb; st.insert_simplex_and_subfaces(edge);}
+ n++;
+ }
+
+ fill_adjacency_matrix_from_st();
+
+ }
+
+
+ public: // Set graph from OFF file.
+ /** \brief Creates a graph G from the triangulation given by the input .OFF file.
+ *
+ */
+ void set_graph_from_OFF(){
+
+ int num_edges = one_skeleton.size();
+ if(num_edges > 0){
+ for(int i = 0; i < num_edges; i++) st.insert_simplex_and_subfaces(one_skeleton[i]);
+ fill_adjacency_matrix_from_st();
+ }
+ else std::cout << "No triangulation read in OFF file!" << std::endl;
+
+ }
+
+ public: // Set graph from Rips complex.
+ /** \brief Creates a graph G from a Rips complex.
+ *
+ * @param[in] threshold threshold value for the Rips complex.
+ * @param[in] distance distance used to compute the Rips complex.
+ *
+ */
+ template<typename Distance> void set_graph_from_rips(double threshold, Distance distance){
+
+ Rips_complex rips_complex_from_points(point_cloud, threshold, distance);
+ rips_complex_from_points.create_complex(st, 1);
+ fill_adjacency_matrix_from_st();
+
+ }
+
+
+
+ public: // Pairwise distances.
+ /** \private \brief Computes all pairwise distances.
+ */
+ template<typename Distance> void compute_pairwise_distances(Distance ref_distance){
+
+ double d; std::vector<double> zeros(n); for(int i = 0; i < n; i++) distances.push_back(zeros);
+ std::string distance = point_cloud_name; distance.append("_dist");
+ std::ifstream input(distance.c_str(), std::ios::out | std::ios::binary);
+
+ if(input.good()){
+ if(verbose) std::cout << "Reading distances..." << std::endl;
+ for(int i = 0; i < n; i++){
+ for (int j = i; j < n; j++){
+ input.read((char*) &d,8); distances[i][j] = d; distances[j][i] = d;
+ }
+ }
+ input.close();
+ }
+
+ else{
+ if(verbose) std::cout << "Computing distances..." << std::endl;
+ input.close(); std::ofstream output(distance, std::ios::out | std::ios::binary);
+ for(int i = 0; i < n; i++){
+ int state = (int) floor( 100*(i*1.0+1)/n ) %10;
+ if( state == 0 && verbose) std::cout << "\r" << state << "%" << std::flush;
+ for (int j = i; j < n; j++){
+ double dis = ref_distance(point_cloud[i],point_cloud[j]);
+ distances[i][j] = dis; distances[j][i] = dis;
+ output.write((char*) &dis,8);
+ }
+ }
+ output.close(); if(verbose) std::cout << std::endl;
+ }
+
+ }
+
+ public: // Automatic tuning of Rips complex.
+ /** \brief Creates a graph G from a Rips complex whose threshold value is automatically tuned with subsampling---see \cite Carriere17c.
+ *
+ * @param[in] distance distance between data points.
+ * @param[in] N number of subsampling iteration (the default reasonable value is 100, but there is no guarantee on how to choose it).
+ * @result delta threshold used for computing the Rips complex.
+ *
+ */
+ template<typename Distance> double set_graph_from_automatic_rips(Distance distance, int N = 100){
+
+ int m = floor(n/ std::exp((1+rate_power)*std::log(std::log(n)/std::log(rate_constant))) );
+ m = std::min(m,n-1);
+ std::vector<int> samples(m); double delta = 0;
+
+ if(verbose) std::cout << n << " points in R^" << data_dimension << std::endl;
+ if(verbose) std::cout << "Subsampling " << m << " points" << std::endl;
+
+ if(distances.size() == 0) compute_pairwise_distances(distance);
+
+ //#pragma omp parallel for
+ for (int i = 0; i < N; i++){
+
+ SampleWithoutReplacement(n,m,samples);
+ double hausdorff_dist = 0;
+ for (int j = 0; j < n; j++){
+ double mj = distances[j][samples[0]]; for (int k = 1; k < m; k++) mj = std::min(mj, distances[j][samples[k]]);
+ hausdorff_dist = std::max(hausdorff_dist, mj);
+ }
+ delta += hausdorff_dist/N;
+
+ }
+
+ if(verbose) std::cout << "delta = " << delta << std::endl;
+ Rips_complex rips_complex_from_points(point_cloud, delta, distance);
+ rips_complex_from_points.create_complex(st, 1);
+ fill_adjacency_matrix_from_st();
+
+ return delta;
+
+ }
+
+
+ // *******************************************************************************************************************
+ // Functions.
+ // *******************************************************************************************************************
+
+ public: // Set function from file.
+ /** \brief Creates the function f from a file containing the function values.
+ *
+ * @param[in] func_file_name name of the input function file.
+ *
+ */
+ void set_function_from_file(const std::string & func_file_name){
+ int vertex_id = 0; std::ifstream input(func_file_name); std::string line; double f;
+ while(std::getline(input,line)){
+ std::stringstream stream(line); stream >> f;
+ func.emplace(vertex_id, f); vertex_id++;
+ }
+ functional_cover = true;
+ cover_name = func_file_name;
+ }
+
+ public: // Set function from kth coordinate
+ /** \brief Creates the function f from the k-th coordinate of the point cloud P.
+ *
+ * @param[in] k coordinate to use (start at 0).
+ *
+ */
+ void set_function_from_coordinate(int k){
+ for(int i = 0; i < n; i++) func.emplace(i,point_cloud[i][k]);
+ char coordinate[100]; sprintf(coordinate, "coordinate %d", k);
+ functional_cover = true;
+ cover_name = coordinate;
+ }
+
+ public: // Set function from vector.
+ /** \brief Creates the function f from a vector stored in memory.
+ *
+ * @param[in] function input vector of values.
+ *
+ */
+ template<class InputRange> void set_function_from_range(InputRange const & function){
+ functional_cover = true;
+ int index = 0; for(auto v : function){func.emplace(index, v); index++;}
+ }
+
+ // *******************************************************************************************************************
+ // Covers.
+ // *******************************************************************************************************************
+
+ public: // Automatic tuning of resolution.
+ /** \brief Computes the optimal length of intervals
+ * (i.e. the smallest interval length avoiding discretization artifacts---see \cite Carriere17c) for a functional cover.
+ *
+ * @result reso interval length used to compute the cover.
+ *
+ */
+ double set_automatic_resolution(){
+
+ if(!functional_cover){std::cout << "Cover needs to come from the preimages of a function." << std::endl; return 0;}
+ if(type != "Nerve" && type != "GIC"){std::cout << "Type of complex needs to be specified." << std::endl; return 0;}
+
+ double reso = 0;
+
+ if(type == "GIC"){
+ for (auto simplex : st.complex_simplex_range()) {
+ if(st.dimension(simplex) == 1){
+ std::vector<int> vertices;
+ for(auto vertex : st.simplex_vertex_range(simplex)) vertices.push_back(vertex);
+ reso = std::max(reso, std::abs(func[vertices[0]] - func[vertices[1]]));
+ }
+ }
+ if(verbose) std::cout << "resolution = " << reso << std::endl;
+ resolution_double = reso;
+ }
+
+ if(type == "Nerve"){
+ for (auto simplex : st.complex_simplex_range()) {
+ if(st.dimension(simplex) == 1){
+ std::vector<int> vertices;
+ for(auto vertex : st.simplex_vertex_range(simplex)) vertices.push_back(vertex);
+ reso = std::max(reso, (std::abs(func[vertices[0]] - func[vertices[1]]))/gain);
+ }
+ }
+ if(verbose) std::cout << "resolution = " << reso << std::endl;
+ resolution_double = reso;
+ }
+
+ return reso;
+
+ }
+
+ public:
+ /** \brief Sets a length of intervals from a value stored in memory.
+ *
+ * @param[in] reso length of intervals.
+ *
+ */
+ void set_resolution_with_interval_length(double reso){resolution_double = reso;}
+ /** \brief Sets a number of intervals from a value stored in memory.
+ *
+ * @param[in] reso number of intervals.
+ *
+ */
+ void set_resolution_with_interval_number(int reso){resolution_int = reso;}
+ /** \brief Sets a gain from a value stored in memory (default value 0.3).
+ *
+ * @param[in] g gain.
+ *
+ */
+ void set_gain(double g = 0.3){gain = g;}
+
+
+ public: // Set cover with preimages of function.
+ /** \brief Creates a cover C from the preimages of the function f.
+ *
+ */
+ void set_cover_from_function(){
+
+ if(resolution_double == -1 && resolution_int == -1){ std::cout << "Number and/or length of intervals not specified" << std::endl; return; }
+ if(gain == -1){ std::cout << "Gain not specified" << std::endl; return; }
+
+ // Read function values and compute min and max
+ std::map<int, double>::iterator it;
+ double maxf, minf; minf = std::numeric_limits<float>::max(); maxf = std::numeric_limits<float>::min();
+ for(it = func.begin(); it != func.end(); it++){minf = std::min(minf, it->second); maxf = std::max(maxf, it->second);}
+ int n = func.size(); if(verbose) std::cout << "Min function value = " << minf << " and Max function value = " << maxf << std::endl;
+
+ // Compute cover of im(f)
+ std::vector<std::pair<double,double> > intervals; int res;
+
+ if(resolution_double == -1){ // Case we use an integer for the number of intervals.
+ double incr = (maxf-minf)/resolution_int; double x = minf; double alpha = (incr*gain)/(2-2*gain);
+ double y = minf + incr + alpha; std::pair<double, double> interm(x,y); intervals.push_back(interm);
+ for(int i = 1; i < resolution_int-1; i++){
+ x = minf + i*incr - alpha;
+ y = minf + (i+1)*incr + alpha;
+ std::pair<double, double> inter(x,y); intervals.push_back(inter);
+ }
+ x = minf + (resolution_int-1)*incr - alpha; y = maxf;
+ std::pair<double, double> interM(x,y); intervals.push_back(interM); res = intervals.size();
+ if(verbose)
+ for(int i = 0; i < res; i++) std::cout << "Interval " << i << " = [" << intervals[i].first << ", " << intervals[i].second << "]" << std::endl;
+ }
+
+ else{
+ if(resolution_int == -1){ // Case we use a double for the length of the intervals.
+ double x = minf; double y = x + resolution_double;
+ while(y <= maxf && maxf - (y-gain*resolution_double) >= resolution_double){
+ std::pair<double, double> inter(x,y); intervals.push_back(inter);
+ x = y - gain*resolution_double;
+ y = x + resolution_double;
+ }
+ std::pair<double, double> interM(x,maxf); intervals.push_back(interM); res = intervals.size();
+ if(verbose)
+ for(int i = 0; i < res; i++) std::cout << "Interval " << i << " = [" << intervals[i].first << ", " << intervals[i].second << "]" << std::endl;
+ }
+
+ else{ // Case we use an integer and a double for the length of the intervals.
+ double x = minf; double y = x + resolution_double; int count = 0;
+ while(count < resolution_int && y <= maxf && maxf - (y-gain*resolution_double) >= resolution_double){
+ std::pair<double, double> inter(x,y); intervals.push_back(inter); count++;
+ x = y - gain*resolution_double;
+ y = x + resolution_double;
+ }
+ res = intervals.size();
+ if(verbose)
+ for(int i = 0; i < res; i++) std::cout << "Interval " << i << " = [" << intervals[i].first << ", " << intervals[i].second << "]" << std::endl;
+ }
+ }
+
+ // Sort points according to function values
+ std::vector<int> points(n); for(int i = 0; i < n; i++) points[i] = i;
+ std::sort(points.begin(),points.end(),Less(this->func));
+ int id = 0; int pos = 0;
+
+ for(int i = 0; i < res; i++){
+
+ // Find points in the preimage
+ std::map<int,std::vector<int> > prop;
+ std::pair<double, double> inter1 = intervals[i];
+ int tmp = pos;
+
+ if(i != res-1){
+
+ if(i != 0){
+ std::pair<double, double> inter3 = intervals[i-1];
+ while(func[points[tmp]] < inter3.second && tmp != n){
+ prop[points[tmp]] = adjacency_matrix[points[tmp]];
+ tmp++;
+ }
+ }
+
+ std::pair<double, double> inter2 = intervals[i+1];
+ while(func[points[tmp]] < inter2.first && tmp != n){
+ prop[points[tmp]] = adjacency_matrix[points[tmp]];
+ tmp++;
+ }
+
+ pos = tmp;
+ while(func[points[tmp]] < inter1.second && tmp != n){
+ prop[points[tmp]] = adjacency_matrix[points[tmp]];
+ tmp++;
+ }
+
+ }
+
+ else{
+
+ std::pair<double, double> inter3 = intervals[i-1];
+ while(func[points[tmp]] < inter3.second && tmp != n){
+ prop[points[tmp]] = adjacency_matrix[points[tmp]];
+ tmp++;
+ }
+
+ while(tmp != n){
+ prop[points[tmp]] = adjacency_matrix[points[tmp]];
+ tmp++;
+ }
+
+ }
+
+ // Compute the connected components with DFS
+ std::map<int,bool> visit; if(verbose) std::cout << "Preimage of interval " << i << std::endl;
+ for(std::map<int, std::vector<int> >::iterator it = prop.begin(); it != prop.end(); it++)
+ visit[it->first] = false;
+ if (!(prop.empty())){
+ for(std::map<int, std::vector<int> >::iterator it = prop.begin(); it != prop.end(); it++){
+ if ( !(visit[it->first]) ){
+ std::vector<int> cc; cc.clear();
+ dfs(prop,it->first,cc,visit); int cci = cc.size(); if(verbose) std::cout << "one CC with " << cci << " points, ";
+ double average_col = 0;
+ for(int j = 0; j < cci; j++){cover[cc[j]].push_back(id); cover_back[id].push_back(cc[j]); average_col += func_color[cc[j]]/cci;}
+ cover_fct[id] = i; cover_color[id] = std::pair<int,double>(cci,average_col);
+ id++;
+ }
+ }
+ }
+ if(verbose) std::cout << std::endl;
+ }
+
+ maximal_dim = id-1;
+
+ }
+
+ public: // Set cover from file.
+ /** \brief Creates the cover C from a file containing the cover elements of each point (the order has to be the same
+ * as in the input file!).
+ *
+ * @param[in] cover_file_name name of the input cover file.
+ *
+ */
+ void set_cover_from_file(const std::string & cover_file_name){
+ int vertex_id = 0; Cover_t cov; std::vector<Cover_t> cov_elts, cov_number;
+ std::ifstream input(cover_file_name); std::string line;
+ while(std::getline(input,line)){
+ cov_elts.clear(); std::stringstream stream(line);
+ while(stream >> cov){
+ cov_elts.push_back(cov); cov_number.push_back(cov);
+ cover_fct[cov] = cov; cover_color[cov].second += func_color[vertex_id]; cover_color[cov].first++; cover_back[cov].push_back(vertex_id);
+ }
+ cover[vertex_id] = cov_elts; vertex_id++;
+ }
+ std::vector<Cover_t>::iterator it;
+ std::sort(cov_number.begin(),cov_number.end()); it = std::unique(cov_number.begin(),cov_number.end());
+ cov_number.resize(std::distance(cov_number.begin(),it)); maximal_dim = cov_number.size()-1;
+ for(int i = 0; i <= maximal_dim; i++) cover_color[i].second /= cover_color[i].first;
+ cover_name = cover_file_name;
+ }
+
+ public: // Set cover from Voronoi
+ /** \brief Creates the cover C from the Voronoï cells of a subsampling of the point cloud.
+ *
+ * @param[in] distance distance between the points.
+ * @param[in] m number of points in the subsample.
+ *
+ */
+ template<typename Distance> void set_cover_from_Voronoi(Distance distance, int m = 100){
+
+ voronoi_subsamples.resize(m); SampleWithoutReplacement(n,m,voronoi_subsamples);
+ if(distances.size() == 0) compute_pairwise_distances(distance);
+ std::vector<double> mindist(n); for(int j = 0; j < n; j++) mindist[j] = std::numeric_limits<double>::max();
+
+ // Compute the geodesic distances to subsamples with Dijkstra
+ for(int i = 0; i < m; i++){
+ if(verbose) std::cout << "Computing geodesic distances to seed " << i << "..." << std::endl;
+ int seed = voronoi_subsamples[i];
+ std::vector<double> dist(n); std::vector<int> process(n);
+ for(int j = 0; j < n; j++){ dist[j] = std::numeric_limits<double>::max(); process[j] = j; }
+ dist[seed] = 0; int curr_size = process.size(); int min_point, min_index; double min_dist;
+ std::vector<int> neighbors; int num_neighbors;
+
+ while(curr_size > 0){
+ min_dist = std::numeric_limits<double>::max(); min_index = -1; min_point = -1;
+ for(int j = 0; j < curr_size; j++){
+ if(dist[process[j]] < min_dist){
+ min_point = process[j]; min_dist = dist[process[j]]; min_index = j;
+ }
+ }
+ assert(min_index != -1); process.erase(process.begin() + min_index);
+ assert(min_point != -1); neighbors = adjacency_matrix[min_point]; num_neighbors = neighbors.size();
+ for(int j = 0; j < num_neighbors; j++){
+ double d = dist[min_point] + distances[min_point][neighbors[j]];
+ dist[neighbors[j]] = std::min(dist[neighbors[j]], d);
+ }
+ curr_size = process.size();
+ }
+
+ for(int j = 0; j < n; j++)
+ if(mindist[j] > dist[j]){
+ mindist[j] = dist[j];
+ if(cover[j].size() == 0) cover[j].push_back(i);
+ else cover[j][0] = i;
+ }
+ }
+
+ for(int i = 0; i < n; i++){ cover_back[cover[i][0]].push_back(i); cover_color[cover[i][0]].second += func_color[i]; cover_color[cover[i][0]].first++; }
+ for(int i = 0; i < m; i++) cover_color[i].second /= cover_color[i].first;
+ maximal_dim = m-1; cover_name = "Voronoi";
+
+ }
+
+ public: // return subset of data corresponding to a node
+ /** \brief Returns the data subset corresponding to a specific node of the created complex.
+ *
+ * @param[in] c ID of the node.
+ * @result cover_back(c) vector of IDs of data points.
+ *
+ */
+ const std::vector<int> & subpopulation(Cover_t c){
+ return cover_back[c];
+ }
+
+ // *******************************************************************************************************************
+ // Visualization.
+ // *******************************************************************************************************************
+
+ public: // Set color from file.
+ /** \brief Computes the function used to color the nodes of the simplicial complex from a file containing the function values.
+ *
+ * @param[in] color_file_name name of the input color file.
+ *
+ */
+ void set_color_from_file(const std::string & color_file_name){
+ int vertex_id = 0; std::ifstream input(color_file_name); std::string line; double f;
+ while(std::getline(input,line)){
+ std::stringstream stream(line); stream >> f;
+ func_color.emplace(vertex_id, f); vertex_id++;
+ }
+ color_name = color_file_name;
+ }
+
+ public: // Set color from kth coordinate
+ /** \brief Computes the function used to color the nodes of the simplicial complex from the k-th coordinate.
+ *
+ * @param[in] k coordinate to use (start at 0).
+ *
+ */
+ void set_color_from_coordinate(int k = 0){
+ for(int i = 0; i < n; i++) func_color.emplace(i, point_cloud[i][k]);
+ color_name = "coordinate "; color_name.append(std::to_string(k));
+ }
+
+ public: // Set color from vector.
+ /** \brief Computes the function used to color the nodes of the simplicial complex from a vector stored in memory.
+ *
+ * @param[in] color input vector of values.
+ *
+ */
+ void set_color_from_vector(std::vector<double> color){
+ for(unsigned int i = 0; i < color.size(); i++) func_color.emplace(i, color[i]);
+ }
+
+ public: // Create a .dot file that can be compiled with neato to produce a .pdf file.
+ /** \brief Creates a .dot file called SC.dot for neato (part of the graphviz package) once the simplicial complex is computed to get a visualization
+ * of its 1-skeleton in a .pdf file.
+ */
+ void plot_DOT(){
+ char mapp[11] = "SC.dot"; std::ofstream graphic(mapp); graphic << "graph GIC {" << std::endl;
+ double maxv, minv; maxv = std::numeric_limits<double>::min(); minv = std::numeric_limits<double>::max();
+ for (std::map<Cover_t,std::pair<int,double> >::iterator iit = cover_color.begin(); iit != cover_color.end(); iit++){
+ maxv = std::max(maxv, iit->second.second); minv = std::min(minv, iit->second.second);
+ }
+ int k = 0; std::vector<int> nodes; nodes.clear();
+ for (std::map<Cover_t,std::pair<int,double> >::iterator iit = cover_color.begin(); iit != cover_color.end(); iit++){
+ if(iit->second.first > mask){
+ nodes.push_back(iit->first);
+ graphic << iit->first << "[shape=circle fontcolor=black color=black label=\"" \
+ << iit->first << ":" << iit->second.first << "\" style=filled fillcolor=\"" \
+ << (1-(maxv-iit->second.second)/(maxv-minv))*0.6 << ", 1, 1\"]" << std::endl;
+ k++;
+ }
+ }
+ int ke = 0; int num_simplices = simplices.size();
+ for (int i = 0; i < num_simplices; i++)
+ if (simplices[i].size() == 2)
+ if (cover_color[simplices[i][0]].first > mask && cover_color[simplices[i][1]].first > mask){
+ graphic << " " << simplices[i][0] << " -- " << simplices[i][1] << " [weight=15];" << std::endl; ke++;}
+ graphic << "}"; graphic.close();
+ std::cout << "SC.dot generated. It can be visualized with e.g. neato." << std::endl;
+ }
+
+ public: // Create a .txt file that can be compiled with KeplerMapper.
+ /** \brief Creates a .txt file called SC.txt describing the 1-skeleton, which can then be plotted with e.g. KeplerMapper.
+ */
+ void write_info(){
+
+ int num_simplices = simplices.size(); int num_edges = 0;
+ char mapp[11] = "SC.txt"; std::ofstream graphic(mapp);
+ for (int i = 0; i < num_simplices; i++)
+ if (simplices[i].size() == 2)
+ if (cover_color[simplices[i][0]].first > mask && cover_color[simplices[i][1]].first > mask)
+ num_edges++;
+
+ graphic << point_cloud_name << std::endl;
+ graphic << cover_name << std::endl;
+ graphic << color_name << std::endl;
+ graphic << resolution_double << " " << gain << std::endl;
+ graphic << cover_color.size() << " " << num_edges << std::endl;
+
+ for (std::map<Cover_t,std::pair<int,double> >::iterator iit = cover_color.begin(); iit != cover_color.end(); iit++)
+ graphic << iit->first << " " << iit->second.second << " " << iit->second.first << std::endl;
+
+ for (int i = 0; i < num_simplices; i++)
+ if (simplices[i].size() == 2)
+ if (cover_color[simplices[i][0]].first > mask && cover_color[simplices[i][1]].first > mask)
+ graphic << simplices[i][0] << " " << simplices[i][1] << std::endl;
+ graphic.close();
+ std::cout << "SC.txt generated. It can be visualized with e.g. python KeplerMapperVisuFromTxtFile.py and firefox." << std::endl;
+ }
+
+
+ public: // Create a .off file that can be visualized (e.g. with Geomview).
+ /** \brief Creates a .off file called SC.off for 3D visualization, which contains the 2-skeleton of the GIC.
+ * This function assumes that the cover has been computed with Voronoi. If data points are in 1D or 2D,
+ * the remaining coordinates of the points embedded in 3D are set to 0.
+ */
+ void plot_OFF(){
+
+ assert(cover_name == "Voronoi");
+ char gic[11] = "SC.off"; std::ofstream graphic(gic);
+ graphic << "OFF" << std::endl; int m = voronoi_subsamples.size(); int numedges = 0; int numfaces = 0;
+ std::vector<std::vector<int> > edges, faces; int numsimplices = simplices.size();
+ for (int i = 0; i < numsimplices; i++) {
+ if(simplices[i].size() == 2){ numedges++; edges.push_back(simplices[i]); }
+ if(simplices[i].size() == 3){ numfaces++; faces.push_back(simplices[i]); }
+ }
+ graphic << m << " " << numedges + numfaces << std::endl;
+ for(int i = 0; i < m; i++){
+ if(data_dimension <= 3){
+ for(int j = 0; j < data_dimension; j++) graphic << point_cloud[voronoi_subsamples[i]][j] << " ";
+ for(int j = data_dimension; j < 3; j++) graphic << 0 << " ";
+ graphic << std::endl;
+ }
+ else for(int j = 0; j < 3; j++) graphic << point_cloud[voronoi_subsamples[i]][j] << " ";
+ }
+ for(int i = 0; i < numedges; i++) graphic << 2 << " " << edges[i][0] << " " << edges[i][1] << std::endl;
+ for(int i = 0; i < numfaces; i++) graphic << 3 << " " << faces[i][0] << " " << faces[i][1] << " " << faces[i][2] << std::endl;
+ graphic.close();
+ std::cout << "SC.off generated. It can be visualized with e.g. geomview." << std::endl;
+
+ }
+
+ // *******************************************************************************************************************
+ // *******************************************************************************************************************
+
+
+ public:
+ /** \brief Creates the simplicial complex.
+ *
+ * @param[in] complex SimplicialComplexForRips to be created.
+ *
+ */
+ template<typename SimplicialComplexForRips>
+ void create_complex(SimplicialComplexForRips & complex) {
+ unsigned int dimension = 0;
+ for(auto const& simplex : simplices){
+ complex.insert_simplex_and_subfaces(simplex);
+ if(dimension < simplex.size()-1) dimension = simplex.size()-1;
+ }
+ complex.set_dimension(dimension);
+ }
+
+ public:
+ /** \brief Computes the simplices of the simplicial complex.
+ */
+ void find_simplices(){
+
+ if(type != "Nerve" && type != "GIC"){std::cout << "Type of complex needs to be specified." << std::endl; return;}
+
+ if(type == "Nerve"){
+ for(std::map<int,std::vector<Cover_t> >::iterator it = cover.begin(); it!=cover.end(); it++) simplices.push_back(it->second);
+ std::vector<std::vector<Cover_t> >::iterator it;
+ std::sort(simplices.begin(),simplices.end()); it = std::unique(simplices.begin(),simplices.end());
+ simplices.resize(std::distance(simplices.begin(),it));
+ }
+
+ if(type == "GIC"){
+
+ if(functional_cover){
+
+ // Computes the simplices in the GIC by looking at all the edges of the graph and adding the
+ // corresponding edges in the GIC if the images of the endpoints belong to consecutive intervals.
+
+ if (gain >= 0.5)
+ throw std::invalid_argument("the output of this function is correct ONLY if the cover is minimal, i.e. the gain is less than 0.5.");
+
+ int v1, v2;
+
+ // Loop on all points.
+ for(std::map<int,std::vector<Cover_t> >::iterator it = cover.begin(); it != cover.end(); it++){
+
+ int vid = it->first; std::vector<int> neighbors = adjacency_matrix[vid]; int num_neighb = neighbors.size();
+
+ // Find cover of current point (vid).
+ if(cover[vid].size() == 2) v1 = std::min(cover[vid][0],cover[vid][1]); else v1 = cover[vid][0];
+ std::vector<int> node(1); node[0] = v1; simplices.push_back(node);
+
+ // Loop on neighbors.
+ for(int i = 0; i < num_neighb; i++){
+
+ int neighb = neighbors[i];
+
+ // Find cover of neighbor (neighb).
+ if(cover[neighb].size() == 2) v2 = std::max(cover[neighb][0],cover[neighb][1]); else v2 = cover[neighb][0];
+
+ // If neighbor is in next interval, add edge.
+ if(cover_fct[v2] == cover_fct[v1] + 1){
+ std::vector<int> edge(2); edge[0] = v1; edge[1] = v2;
+ simplices.push_back(edge);
+ }
+ }
+ }
+ std::vector<std::vector<Cover_t> >::iterator it;
+ std::sort(simplices.begin(),simplices.end()); it = std::unique(simplices.begin(),simplices.end());
+ simplices.resize(std::distance(simplices.begin(),it));
+
+ }
+
+ else{
+
+ // Find IDs of edges to remove
+ std::vector<int> simplex_to_remove; int simplex_id = 0;
+ for (auto simplex : st.complex_simplex_range()) {
+ if(st.dimension(simplex) == 1){
+ std::vector<std::vector<Cover_t> > comp;
+ for(auto vertex : st.simplex_vertex_range(simplex)) comp.push_back(cover[vertex]);
+ if(comp[0].size() == 1 && comp[0] == comp[1]) simplex_to_remove.push_back(simplex_id);
+ }
+ simplex_id++;
+ }
+
+ // Remove edges
+ if(simplex_to_remove.size() > 1){
+ int current_id = 1;
+ auto simplex = st.complex_simplex_range().begin(); int num_rem = 0;
+ for(int i = 0; i < simplex_id-1; i++){
+ int j = i+1; auto simplex_tmp = simplex; simplex_tmp++;
+ if(j == simplex_to_remove[current_id]){st.remove_maximal_simplex(*simplex_tmp); current_id++; num_rem++;}
+ else simplex++;
+ } simplex = st.complex_simplex_range().begin();
+ for(int i = 0; i < simplex_to_remove[0]; i++) simplex++; st.remove_maximal_simplex(*simplex);
+ }
+
+ // Build the Simplex Tree corresponding to the graph
+ st.expansion(maximal_dim);
+
+ // Find simplices of GIC
+ simplices.clear();
+ for (auto simplex : st.complex_simplex_range()) {
+ if(!st.has_children(simplex)){
+
+ std::vector<Cover_t> simplx;
+ for (auto vertex : st.simplex_vertex_range(simplex)){
+ unsigned int sz = cover[vertex].size();
+ for(unsigned int i = 0; i < sz; i++){
+ simplx.push_back(cover[vertex][i]);
+ }
+ }
+
+ std::sort(simplx.begin(),simplx.end()); std::vector<Cover_t>::iterator it = std::unique(simplx.begin(),simplx.end());
+ simplx.resize(std::distance(simplx.begin(),it));
+ simplices.push_back(simplx);
+
+ }
+ }
+ std::vector<std::vector<Cover_t> >::iterator it;
+ std::sort(simplices.begin(),simplices.end()); it = std::unique(simplices.begin(),simplices.end());
+ simplices.resize(std::distance(simplices.begin(),it));
+
+ }
+ }
+
+ }
+
+};
+
+} // namespace cover_complex
+
+} // namespace Gudhi
+
+#endif // GIC_H_